CMake for MeVisLab - Documentation

CMake for MeVisLab
- Documentation

CMake for MeVisLab - Documentation

Chapter 1. CMake and MeVisLab
1.1. Introduction to CMake

CMake is an open-source, cross-platform family of tools designed to build, test and package software.
CMake files are widely supported by many development environments.

MeVisLab makes use of CMake files for building source code since version 3.5. Previous versions
used the gmake build file translator by Qt, that translated .pro and .pri files into the platform specific
build projects. A converter tool that translates .pro files into CMake files reasonably well is available
in MeVisLab.

For the general documentation for CMake visit the CMake reference at cmake.org.

CMake is not delivered with the MeVisLab SDK. It needs to be installed by the user if she or he wants
to build their own modules. Several IDEs automatically install a version of CMake.

1.2. Syntax in CMake files

A description of the syntax in CMake can be found in the CMake Tutorial. A glance at the available
commands in the command reference and at generator expressions might also be helpful.

MeVisLab comes with some useful CMake functions that handle some repeated or error-prone tasks.
They are listed later in this document.

In a later chapter there are also some hints what to do when old .pro files shall be manually migrated to
CMake files or how to fix some of the things the automatic converter does not get right.

1.3. CMake Files in MeVisLab

CMake based projects generally contain a file CvakeLi sts. t xt at root level that describes the steps
to build, test, and install a project.

In MeVisLab, there are some special CMake functions that handle scenarios that are specific to
MeVisLab and its package structure.

Side note: Cvakeli st s. t xt can also include the Cvakeli st s. t xt of sub-directories with the command
add_subdirectory().

A typical example (M_Modul eW apper Exanpl e/ CVakeli st s. t xt):

cmake_m ni mum r equi r ed(VERSI ON 3. 20)

pr oj ect (M_Modul eW apper Exanpl e)

find_package(MeVi sLab COVPONENTS M. M_ABBase Networ k HI NTS "$ENV{ MLAB_ROOT}" REQUI RED)

set (CMAKE_AUTOMOC TRUE)
find_package(Q@5 COVWONENTS Core CGui REQUI RED)

add_l i brary(M.Mdul eW apper Exanple "")
add_l i brary(MeVi sLab: : M.Modul eW apper Exanpl e ALI AS M_Mbdul eW apper Exanpl e)

gener at e_export _header (M_Modul eW apper Exanpl e)
target _sources(M.-Mdul eW apper Exanpl e PRI VATE

m Modul eW apper Exanpl e. cpp
m Mbdul eW apper Exanpl e. h

https://cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

CMake and MeVisLab

M_Mbdul eW apper Exanpl el ni t . cpp
M_Modul eW apper Exanpl el nit. h
)

target _conpil e_definiti ons(M_Modul eW apper Exanpl e PRI VATE MEVI S TARGET=M_Mbdul eW apper Exanpl e)

target _link_libraries(MMdul eWapper Exanpl e
PUBLI C
Q5::Core
Q5:: Qi
MeVi sLab: : ML
MeVi sLab: : Net wor k
MeVi sLab: : M_LABBase

)

m ab_i nstal | (M.Mbdul eW apper Exanpl e NS MeVi sLab)

Here is a short explanation of the individual statements:

crmake_m ni mum r equi r ed(VERSI ON 3. 20)

This tells CMake which CMake version is required at minimum. This is important, because it also
activates/deactivates some features in the CMake language, depending on the given version. MeVisLab
currently requires 3.20.

proj ect (M_Mbdul eW apper Exanpl e)

This sets the name of this project. However, this is the simplest form. It is recommended to specify at
least the VERSI ON.

find_package(MeVi sLab COVPONENTS M. M_ABBase Networ k HI NTS "$ENV{ MLAB_ROOT}" REQUI RED)

This command tells CMake that the project links against parts of MeVisLab. The actual 'parts' are listed
after the COMPONENTS option.

The HI NTS option tells CMake where to find the central MeVisLab cmake file, which resolves the linked
libraries and adds the required additional CMake functions. In this case it tells CMake to search relative
to the MLAB_ROOT environment variable, which should point to the Packages directory of your MeVisLab
SDK installation directory. (This should automatically be set by the SDK installer.)

‘ Note
find_package(MeVi sLab) not only finds MeVisLab, it also loads additional functions and
configures various CMake settings. It is important to execute this call as early as possible in
the project, especially before other fi nd_package calls are made or custom CMake settings
are applied.

set (CMAKE_AUTOMOC TRUE)

This is a project that builds against the Qt toolkit. Setting the variable CMAKE_AUTOMOC to TRUE tells
CMake that the Qt moc tool should automatically be applied to all relevant source files.

find_package(Q 5 COVPONENTS Core Gui REQUI RED)

CMake and MeVisLab

This tells CMake to look for Qt5 in the third-party libraries, and the necessary components. Note that this
should always come after f i nd_package(MeVi sLab), as this sets some CMake search paths; otherwise
another Qt installed on your system might be found.

There should be a fi nd_package() statement for every required third-party dependency.

add_l i brary(M-Mdul eW apper Exanpl e "")
add_l i brary(MeVi sLab: : M_Modul eW apper Exanpl e ALI AS M_Modul eW apper Exanpl e)

This tells CMake to add a library target called M_LModul eW apper Exanpl e.

It is good practice to add the target under a vendor-specific namespace, which is done with the second
add_l i brary. A different namespace than MeVisLab shall be used for own projects to avoid name
conflicts. Always link to projects with their namespace name.

gener at e_export _header (M_Modul eW apper Exanpl e)

It generates and uses a header file that contains platform and compiler specific EXPORT macros.

target _sources(M.-Mdul eW apper Exanpl e PRI VATE
m Mbdul eW apper Exanpl e. cpp
m Mbdul eW apper Exanpl e. h
M_Modul eW apper Exanpl el ni t. cpp
M_Modul eW apper Exanpl el nit. h

This lists the source files that should be compiled. Note that these files should usually be defined as
PRI VATE.

target _conpil e_definiti ons(M-Mddul eW apper Exanpl e PRI VATE MEVI S_TARGET=M_Modul eW apper Exanpl e)

Set the MEVI S_TARGET compile definition to be used for the compile process.

target _|link_libraries(MMdul eWapper Exanpl e
PUBLI C
Q5::Core
Q5:: Gui
MeVi sLab: : ML
MeVi sLab: : Net wor k
MeVi sLab: : MLABBase

These are the targets this project links against. Some belong to Qt, some belong to MeVisLab itself.
Note that since the dependencies are public, they are also made part of the link interface and would be
automatically available to projects linking this target.

m ab_i nstal | (M.Mbdul eW apper Exanpl e NS MeVi sLab)

Generates MeVisLab specific i nst al | rules for this project.

One should use

CMake and MeVisLab

m ab_i nstal | (M/Proj ect NS MyNamespace)

for custom projects, that is, use a different namespace than MeVisLab to avoid name conflicts (it should
correspond to the namespace in the second add_| i br ary statement). And if other projects should be
able to link against this project, use these statements instead:

m ab_i nstal | (M/Proj ect NS MyNanespace EXPORT)
m ab_i nstal | _header s(MyProj ect)

Chapter 2. CMake for MeVisLab
Reference

2.1. Custom commands
2.1.1. find_package(MeVisLab)

find_package(MeVi sLab COMPONENTS ... HI NTS "$ENV{ M.AB_ROOT}" REQUI RED)

This should be one of the first statements in every CMakelists.txt project (after
cmake_mi ni mum requi red() and proj ect()).

This will provide some MeVisLab specific functions and change various CMake settings. It will also
set up the target directories for the custom package (by calling m ab_set up_current package). Set
the CMake variable MLAB_AUTOVATI C_PACKAGE_SETUP to OFF first if this needs to be used outside of
a MeVisLab package

Example:

find_package(MeVi sLab COVPONENTS M. HI NTS " $ENV{ MLAB_ROOT} " REQUI RED)

2.1.2. mlab_add_executable

m ab_add_execut abl e(<t ar get >)

It is a special command to create an executable target and put it into the bin directory of the MeVisLab
package.

Example:

m ab_add_execut abl e(MyTar get)

2.1.3. mlab_add_test

m ab_add_test(<target> [RUN_SERI AL] [GUI] [EXECUTE_TEST <OV OFF>])

Defines that the target is an executable that will be compiled to CodeTest s/ bi n (where it is found by
the TestCenter too) and executed as a unit test. Sources should be added with the t ar get _sour ces()
command.

Execution of the test can be suspended with the option EXECUTE_TEST OFF.
The option RUN_SERI AL enforces that this test is not run in parallel with other tests.

The option GUI makes this test an executable with a graphical user interface (this usually does not make
sense for a unit test).

Example:

m ab_add_t est (MyTar get)

2.1.4. mlab_install

m ab_install (<target> NS <nanespace>] [EXPORT] [OPTI ONAL] [CONFI GURATI ONS <confi gl1>. ..

This command installs the target in the correct package specific directory. It also generates . ml depends
files — if appropriate — that aid the installer generation. It also makes sure that the necessary CMake
files are generated in the package's cmake directory.

CMake for MeVisLab Reference

With EXPORT one specifies that other libraries can link against this library. One would usually also call
m ab_i nstal | _header s in this case.

If OPTI ONAL is specified, cmake will ignore if files to install are missing, e.g., because the project failed
to build.

If the environment or CMake variable MLAB_AUTOVATI C_POSTBUI LD_COPY is true, then this function will
also make sure that the resulting libraries and CMake files are directly copyied to the 1i b and cnmake
directories of the source package after building. This way the i nstal | step can be avoided, which
improves on the build-and-debug cycle. However, the CMake installation phase is not executed and
therefore no corresponding settings are applied.

If you also want to install .pdb files for debugging (.debug files on Unix), you can set the global CMake
variable MLAB_INSTALL_PDBS, this variable is checked by mlab_install.

Example:

m ab_instal |l (M/Li brary NS MyNanespace EXPORT)

2.1.5. mlab_install_directory

mab_install_directory(<sub_directory> [<install_argl>...])

If a directory isn't covered by nl ab_i nst al | _package (or there is the need to do it all manually), then
it can be installed separately with this command. The corresponding target directory is determined
automatically.

If one wants to set separate arguments for the generated i nst al | statement (like EXCLUDE) one can
give it as additional arguments. USE_SOURCE_PERM SSI ONS is set in any case, though.

Example:

m ab_i nstal | _di rectory(Sources)

2.1.6. mlab_install file

mab_install _file(<filename> [<install_argl>...])
Same as nl ab_i nstal | _directory for asingle file.

Example:

m ab_install _file(Description.txt)

2.1.7. mlab_install headers

m ab_i nstal | _header s(<target >)

Installs the necessary header files for an exported target (with m ab_install (... EXPORT)). This
function will detect dedicated include directories like i ncl ude/l ncl ude and set the exported include
directory for the installed library accordingly.

Note that this function uses a very simple heuristic by just copying certain file extensions (*. h and
* . hpp) from certain directories (". ", i ncl ude, I ncl ude and sr c). CMake properties on targets, files or
directories are not taken into account. Also almost no corresponding files from the Bl NARY_DI Rdirectory
are copied either, except for a header generated by gener at e_export _header that uses the standard

naming conventions.

Example:

m ab_instal | _header s(M/Li brary)

https://cmake.org/cmake/help/latest/prop_tgt/BINARY_DIR.html
https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html

CMake for MeVisLab Reference

2.1.8. mlab_install package
m ab_i nstal | _package([GLOB_PRQIECTS] [W TH_TESTCASES])

This command goes into the CvakelLi st s. t xt alongside your Package. def file. It generates i nst al |
statements for all the source directories that are typically needed for a package (like Mbdul es,
Docurent at i on/ Publ i sh, etc.), so that one cani nst al | the source package into a separate directory,
without polluting the source directory with the compiled libraries as it is common practice when using
CMake.

The GLOB_PRQJECTS option tells this command to automatically install all Modul es sub-directories that
it finds in the Pr oj ect s directory of the current package.

With W TH_TESTCASES, also the Test Cases directory is installed. Together with GLOB_PRQIECTS, this
also finds Test Cases sub-directories in the Proj ect s directory.

Example:

m ab_instal |l _package(G.OB_PROJECTS)

2.1.9. mlab_setup_current_package

m ab_set up_current _package([<source_dir>])

Sets the output directories for the current (or given) directory. It is recommended to use this
command in the CMakelists.txt file alongside the Package. def file. It also sets the variables
MEVI SLAB_PACKAGE_ROOT (pointing to the directory of the Package. def), MEVI SLAB_PACKAGE_GROUP
(the package group name as found in the Package. def), and MEVI SLAB_PACKAGE_NAME (the package
name as found in the Package. def).

If the files <package_group>_Settings. cnmake and/or
<package_gr oup>_<package_nane>_Setti ngs. cmake are found anywhere in the CMake module
search path, then they will be also included at this point. (Note: The cnake directory of any package is
automatically added to the CMake module search path.) This allows to set package specific compiler
settings in a central place.

If M ab_setup_current _package() has already been called successfully in a directory above the
current Cvakeli st s. t xt , this function will do nothing (it looks for MEVI SLAB_PACKAGE_ROOT).

https://cmake.org/cmake/help/latest/command/install.html

Chapter 3. Migrating from .pro files to

CMake files

3.1. Things one should know

There are a few pitfalls that one should be aware of when migrating from . pr o files to CMake files, even
when using the . pr o file converter in MeVisLab.

3.1.1. How to use the .pro file converter

MeVisLab has an interactive tool for converting . pr o files into CMake files. This is accessible through
the MeVisLab main menu, select Scripting — Migration —» Convert Pro Files to CMake...

This is how it looks like (with a package from the Public SDK converted):

Figure 3.1. The convertProFileToCMake user script

Save All

and store the generated code for the selected item with Ctrl+5 if you don't want

|to save it all at once.

Directory: |D:,-’usiems,-’svn,-’git,-’conan,-’FMEworlq’ReIease @ Brows
Result: Root= D:/usiems/svn/qit/conan/FMEwork/Release | original: G ted Existi l
— — 11 | TEMPLATE = lib - enerate xisting
- 12 | TARGET = S5oFiberVis cmake minimum reguired (VERSICH :
-} Projects 13 - -
= MLDiffusionMRI 14 | CONFIG += dll project (SoFiberVis)
- Sources 15 |include (dependencies.pri)
- DT ICalculator 16 find package (MeVisLab COMPCNENTS
DTICalculator.pro 17 |MLAB_ENABLE_QA_ RELEVANT WARNINGS = 1 SoShader SoUtils SovirtualVolums
-1 MLDTT 18 SENV{MLAB ROOT} REQUIRED)
MLDTLpro 15 | # Make sure to set CONFIG before the following find package (FME COMPONENTS MLFi
=} MLFiberClustering line. -
MLFiberClustering.pro 20 |include (§ (MLAB CURRENT PACKAGE DIR)/ add library(SoFiberVis)
=1 MLFiberUtilsExtension Configuration/DefaultProjectSetup.pri) add_library(E}LE: :S5oFiberVis RALIZ
mlFiberUtilsExtension.pro 21 -
- SoFiberVis 22 |DEFINES += SOFIBERVIS_EXPORTS # set target properties (SoFiberd
= Sources 23 MEVIS MAINTAINER akoehn) # not
SoFiberVis.pro 1 24 |HEADERS += \ # MLAB ENABLE QA RELEVANT WARNI!
- Sources) SoFiberVis.h \ target_sources (SoFiberVis
= Inventor 26 SoFiberVisSystem.h PRIVATE
=1 SoDiffusionMRI 27 SoFiberVis.h
] SODfBWHbEf_SEE‘ 22 | SOURCES += \ SoFiberVisSystem.h
SoDrawFiberSet.pro 29 SoFiberVis.cpp \ | SoFiberVis.cpp
=+ ML o 30 SoFiberVisInit.cpp SoFiberVisInit.cpp
=1 MLDiffusionMRI 1)
= Miﬂf}?—u-?"'oﬂgﬁ"iaﬁ'fs 32 | # Add other files (doxygen configuration and gui
MLDiffusionHelpers.pro definition file) +| ||target link libraries(SoFiberVis
- MLDTIStable q » PRIVATE
MLDTIStable.pro]
- MLFiberTrackingStable | |
MLFiberTrackingStable.pro EpaE SR
- MLFiberTree £ .
MLFiberTree.pro IO
-t MLFibertils Line 17: Unhandled variable: MLAB_ENABLE_QA_RELEVANT_WARNINGS
MLFiberltils.pro
=t MLOctree
MLOctree.pro
- MLStochasticCollocation
MLStochasticCollocation.pro
] »
0U Can step througd € Conver IST WI' € arrow Keys (T It has the Tocus,
| | B tep through th ted st with th keys (f it has the focus)

Select in the upper bar the directory of the . pro files that should (recursively) be converted with the
Browse... button. The directory is persistent, so there is no need to re-enter the directory for another try.

The Options... button opens a small dialog where one can define which packages should get which
CMake namespace. A sample definition could look like this:

10

Migrating from .pro
files to CMake files

MyPackageG oup/ *=MyNanespace
MyPackageG oup/ MySpeci al Package=MySpeci al Nanespace

This is also persistent, so this needs to be entered only once.

After entering this data, pressing the Convert button starts the process. The script will now first scan
all packages for package . pri files (which it will need to correctly assign CMake namespaces to the
entries in the CONFI Gvariable). Then it will convert the requested . pr o files. The resulting files are not
written back immediately, but listed in the area below, where they can be inspected and saved manually.

The list on the left side displays all the converted files and directories. Note that one can also click
on intermediate directories, since CMakeli st s. t xt files are generated for these too (for the necessary
add_subdi r ect ory statements). If there were any errors during the conversion, a number on the right
of the item will show how many errors were emitted for this file.

The area to the right of the list allows the inspection of the conversion itself. The left half shows the
original .pro file (if one selects a . pr o file, for directories this stays empty). The right half shows the
resulting file under the Generated tab. If there is already a file in this place, its content is shown under the
Existing tab. The target file name is shown below this area on the right (usually it is "CVakeLi st s. t xt ",
but if more than one . pr o file is in a directory, the converter will decide to work with include files that
end on . cneke).

Below this are two buttons Explore and Save. Explore will open the file explorer at the selected location.
Save will save the currently selected file. The keyboard shortcut Ctrl+S will also do this.

. Note
All files are saved together with the Save All button below the directory/file tree (keyboard
shortcut Ctrl+Shift+S).

The area below the text areas shows the warnings/errors that happened for the selected file. One should
inspect any errors and modify the generated file if necessary.

3.1.2. Translating the CONFIG entries.

The entries in the CONFI G variable usually denote other libraries that the project links against.

The name stays the same for entries that are found in one's own package . pri files, but is prefixed
with the CMake namespace that was defined in the dialog opened by the Options... button. The known
exports of the PublicSDK on the other hand are converted through an internal list. These are then added
as arguments of the t arget _l i nk_l i brari es function.

3.1.3. Unhandled CONFIG entries.

Occasionally an entry in the CONFI G variable is unknown. The converter will still treat this as a library
to link, but will prefix it with the UNKNOAN namespace. To resolve this, one needs to find either what the
correct CMake name for this library is, or if this is not a library at all and just serves some other purpose.
In this case one might perhaps use an opti on statement to define an optional variable, and some i f
statement afterwards that uses this variable, and has the necessary statements in its body. What these
statements should look like is out of scope for the converter and this text.

3.1.4. Include directories.

Include directories in CMake are specified through the t ar get _i ncl ude_di r ect ori es directive. One
important aspect of this is that the directories are specified differently for in-build use and after installation
(this assumes that the target library is installed in a completely different directory).

11

https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://cmake.org/cmake/help/latest/command/option.html
https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/command/target_include_directories.html

Migrating from .pro
files to CMake files

For in-build use, include directories are specified as absolute paths, using the
CMAKE_CURRENT_SOURCE_DI Rvariable, and in a generator expression that only expands for the in-build
use. Example:

target _i ncl ude_directori es(M-Mdul eW apper Exanpl e PUBLIC
$<BUI LD_| NTERFACE: ${ CMAKE_CURRENT_SOURCE_ DI R} >
$<BUI LD_| NTERFACE: ${ CMAKE_CURRENT_SOURCE_DI R}/ soneSubbDi r ect or y>

)

These directories should be PUBLI Cif other libraries build against this library.

For building against the installed library, include directories are specified as relative paths, but relative to
the installation folder. If one uses the ml ab_i nst al | _header s directive, itis not necessary to do anything
if your include directory is the source directory of your library itself, or a sub-folder called i ncl ude,
I ncl ude, or src, since m ab_i nstal | _headers sets this automatically. Otherwise it is necessary to
add a statement like this:

conpute relative installation directory:
file(RELATI VE_PATH REL ${ CMAKE SOURCE DI R} ${ CMAKE_CURRENT_SOURCE DI R})

target _i ncl ude_directori es(M-Mdul eW apper Exanpl e PUBLIC
$<I NSTALL_| NTERFACE: ${ REL}/ someSubDi r ect or y>

)

12

	CMake for MeVisLab - Documentation
	Chapter 1. CMake and MeVisLab
	1.1. Introduction to CMake
	1.2. Syntax in CMake files
	1.3. CMake Files in MeVisLab

	Chapter 2. CMake for MeVisLab Reference
	2.1. Custom commands
	2.1.1. find_package(MeVisLab)
	2.1.2. mlab_add_executable
	2.1.3. mlab_add_test
	2.1.4. mlab_install
	2.1.5. mlab_install_directory
	2.1.6. mlab_install_file
	2.1.7. mlab_install_headers
	2.1.8. mlab_install_package
	2.1.9. mlab_setup_current_package

	Chapter 3. Migrating from .pro files to CMake files
	3.1. Things one should know
	3.1.1. How to use the .pro file converter
	3.1.2. Translating the CONFIG entries.
	3.1.3. Unhandled CONFIG entries.
	3.1.4. Include directories.

