
1

CMake for MeVisLab - Documentation

CMake for MeVisLab
- Documentation

2

CMake for MeVisLab - Documentation

3

Chapter 1. CMake and MeVisLab
1.1. Introduction to CMake
CMake is an open-source, cross-platform family of tools designed to build, test and package software.
CMake files are widely supported by many development environments.

MeVisLab makes use of CMake files for building source code since version 3.5. Previous versions
used the qmake build file translator by Qt, that translated .pro and .pri files into the platform specific
build projects. A converter tool that translates .pro files into CMake files reasonably well is available
in MeVisLab.

For the general documentation for CMake visit the CMake reference at cmake.org.

CMake is not delivered with the MeVisLab SDK. It needs to be installed by the user if she or he wants
to build their own modules. Several IDEs automatically install a version of CMake.

1.2. Syntax in CMake files
A description of the syntax in CMake can be found in the CMake Tutorial. A glance at the available
commands in the command reference and at generator expressions might also be helpful.

MeVisLab comes with some useful CMake functions that handle some repeated or error-prone tasks.
They are listed later in this document.

In a later chapter there are also some hints what to do when old .pro files shall be manually migrated to
CMake files or how to fix some of the things the automatic converter does not get right.

1.3. CMake Files in MeVisLab
CMake based projects generally contain a file CMakeLists.txt at root level that describes the steps
to build, test, and install a project.

In MeVisLab, there are some special CMake functions that handle scenarios that are specific to
MeVisLab and its package structure.

Side note: CMakeLists.txt can also include the CMakeLists.txt of sub-directories with the command
add_subdirectory().

A typical example (MLModuleWrapperExample/CMakeLists.txt):

cmake_minimum_required(VERSION 3.20)

project(MLModuleWrapperExample)

find_package(MeVisLab COMPONENTS ML MLABBase Network HINTS "$ENV{MLAB_ROOT}" REQUIRED)

set(CMAKE_AUTOMOC TRUE)

find_package(Qt5 COMPONENTS Core Gui REQUIRED)

add_library(MLModuleWrapperExample "")

add_library(MeVisLab::MLModuleWrapperExample ALIAS MLModuleWrapperExample)

generate_export_header(MLModuleWrapperExample)

target_sources(MLModuleWrapperExample PRIVATE

 mlModuleWrapperExample.cpp

 mlModuleWrapperExample.h

https://cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

CMake and MeVisLab

4

 MLModuleWrapperExampleInit.cpp

 MLModuleWrapperExampleInit.h

)

target_compile_definitions(MLModuleWrapperExample PRIVATE MEVIS_TARGET=MLModuleWrapperExample)

target_link_libraries(MLModuleWrapperExample

 PUBLIC

 Qt5::Core

 Qt5::Gui

 MeVisLab::ML

 MeVisLab::Network

 MeVisLab::MLABBase

)

mlab_install(MLModuleWrapperExample NS MeVisLab)

Here is a short explanation of the individual statements:

cmake_minimum_required(VERSION 3.20)

This tells CMake which CMake version is required at minimum. This is important, because it also
activates/deactivates some features in the CMake language, depending on the given version. MeVisLab
currently requires 3.20.

project(MLModuleWrapperExample)

This sets the name of this project. However, this is the simplest form. It is recommended to specify at
least the VERSION.

find_package(MeVisLab COMPONENTS ML MLABBase Network HINTS "$ENV{MLAB_ROOT}" REQUIRED)

This command tells CMake that the project links against parts of MeVisLab. The actual 'parts' are listed
after the COMPONENTS option.

The HINTS option tells CMake where to find the central MeVisLab cmake file, which resolves the linked
libraries and adds the required additional CMake functions. In this case it tells CMake to search relative
to the MLAB_ROOT environment variable, which should point to the Packages directory of your MeVisLab
SDK installation directory. (This should automatically be set by the SDK installer.)

Note

find_package(MeVisLab) not only finds MeVisLab, it also loads additional functions and
configures various CMake settings. It is important to execute this call as early as possible in
the project, especially before other find_package calls are made or custom CMake settings
are applied.

set(CMAKE_AUTOMOC TRUE)

This is a project that builds against the Qt toolkit. Setting the variable CMAKE_AUTOMOC to TRUE tells
CMake that the Qt moc tool should automatically be applied to all relevant source files.

find_package(Qt5 COMPONENTS Core Gui REQUIRED)

CMake and MeVisLab

5

This tells CMake to look for Qt5 in the third-party libraries, and the necessary components. Note that this
should always come after find_package(MeVisLab), as this sets some CMake search paths; otherwise
another Qt installed on your system might be found.

There should be a find_package() statement for every required third-party dependency.

add_library(MLModuleWrapperExample "")

add_library(MeVisLab::MLModuleWrapperExample ALIAS MLModuleWrapperExample)

This tells CMake to add a library target called MLModuleWrapperExample.

It is good practice to add the target under a vendor-specific namespace, which is done with the second
add_library. A different namespace than MeVisLab shall be used for own projects to avoid name
conflicts. Always link to projects with their namespace name.

generate_export_header(MLModuleWrapperExample)

It generates and uses a header file that contains platform and compiler specific EXPORT macros.

target_sources(MLModuleWrapperExample PRIVATE

 mlModuleWrapperExample.cpp

 mlModuleWrapperExample.h

 MLModuleWrapperExampleInit.cpp

 MLModuleWrapperExampleInit.h

)

This lists the source files that should be compiled. Note that these files should usually be defined as
PRIVATE.

target_compile_definitions(MLModuleWrapperExample PRIVATE MEVIS_TARGET=MLModuleWrapperExample)

Set the MEVIS_TARGET compile definition to be used for the compile process.

target_link_libraries(MLModuleWrapperExample

 PUBLIC

 Qt5::Core

 Qt5::Gui

 MeVisLab::ML

 MeVisLab::Network

 MeVisLab::MLABBase

)

These are the targets this project links against. Some belong to Qt, some belong to MeVisLab itself.
Note that since the dependencies are public, they are also made part of the link interface and would be
automatically available to projects linking this target.

mlab_install(MLModuleWrapperExample NS MeVisLab)

Generates MeVisLab specific install rules for this project.

One should use

CMake and MeVisLab

6

mlab_install(MyProject NS MyNamespace)

for custom projects, that is, use a different namespace than MeVisLab to avoid name conflicts (it should
correspond to the namespace in the second add_library statement). And if other projects should be
able to link against this project, use these statements instead:

mlab_install(MyProject NS MyNamespace EXPORT)

mlab_install_headers(MyProject)

7

Chapter 2. CMake for MeVisLab
Reference
2.1. Custom commands

2.1.1. find_package(MeVisLab)
find_package(MeVisLab COMPONENTS ... HINTS "$ENV{MLAB_ROOT}" REQUIRED)

This should be one of the first statements in every CMakeLists.txt project (after
cmake_minimum_required() and project()).

This will provide some MeVisLab specific functions and change various CMake settings. It will also
set up the target directories for the custom package (by calling mlab_setup_current_package). Set
the CMake variable MLAB_AUTOMATIC_PACKAGE_SETUP to OFF first if this needs to be used outside of
a MeVisLab package

Example:

find_package(MeVisLab COMPONENTS ML HINTS "$ENV{MLAB_ROOT}" REQUIRED)

2.1.2. mlab_add_executable
mlab_add_executable(<target>)

It is a special command to create an executable target and put it into the bin directory of the MeVisLab
package.

Example:

mlab_add_executable(MyTarget)

2.1.3. mlab_add_test
mlab_add_test(<target> [RUN_SERIAL] [GUI] [EXECUTE_TEST <ON/OFF>])

Defines that the target is an executable that will be compiled to CodeTests/bin (where it is found by
the TestCenter too) and executed as a unit test. Sources should be added with the target_sources()
command.

Execution of the test can be suspended with the option EXECUTE_TEST OFF.

The option RUN_SERIAL enforces that this test is not run in parallel with other tests.

The option GUI makes this test an executable with a graphical user interface (this usually does not make
sense for a unit test).

Example:

mlab_add_test(MyTarget)

2.1.4. mlab_install
mlab_install(<target> NS <namespace>] [EXPORT] [OPTIONAL] [CONFIGURATIONS <config1>...])

This command installs the target in the correct package specific directory. It also generates .mldepends
files — if appropriate — that aid the installer generation. It also makes sure that the necessary CMake
files are generated in the package's cmake directory.

CMake for MeVisLab Reference

8

With EXPORT one specifies that other libraries can link against this library. One would usually also call
mlab_install_headers in this case.

If OPTIONAL is specified, cmake will ignore if files to install are missing, e.g., because the project failed
to build.

If the environment or CMake variable MLAB_AUTOMATIC_POSTBUILD_COPY is true, then this function will
also make sure that the resulting libraries and CMake files are directly copyied to the lib and cmake
directories of the source package after building. This way the install step can be avoided, which
improves on the build-and-debug cycle. However, the CMake installation phase is not executed and
therefore no corresponding settings are applied.

If you also want to install .pdb files for debugging (.debug files on Unix), you can set the global CMake
variable MLAB_INSTALL_PDBS, this variable is checked by mlab_install.

Example:

mlab_install(MyLibrary NS MyNamespace EXPORT)

2.1.5. mlab_install_directory
mlab_install_directory(<sub_directory> [<install_arg1>...])

If a directory isn't covered by mlab_install_package (or there is the need to do it all manually), then
it can be installed separately with this command. The corresponding target directory is determined
automatically.

If one wants to set separate arguments for the generated install statement (like EXCLUDE) one can
give it as additional arguments. USE_SOURCE_PERMISSIONS is set in any case, though.

Example:

mlab_install_directory(Sources)

2.1.6. mlab_install_file
mlab_install_file(<filename> [<install_arg1>...])

Same as mlab_install_directory for a single file.

Example:

mlab_install_file(Description.txt)

2.1.7. mlab_install_headers
mlab_install_headers(<target>)

Installs the necessary header files for an exported target (with mlab_install(... EXPORT)). This
function will detect dedicated include directories like include/Include and set the exported include
directory for the installed library accordingly.

Note that this function uses a very simple heuristic by just copying certain file extensions (*.h and
*.hpp) from certain directories (".", include, Include and src). CMake properties on targets, files or
directories are not taken into account. Also almost no corresponding files from the BINARY_DIR directory
are copied either, except for a header generated by generate_export_header that uses the standard
naming conventions.

Example:

mlab_install_headers(MyLibrary)

https://cmake.org/cmake/help/latest/prop_tgt/BINARY_DIR.html
https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html

CMake for MeVisLab Reference

9

2.1.8. mlab_install_package
mlab_install_package([GLOB_PROJECTS] [WITH_TESTCASES])

This command goes into the CMakeLists.txt alongside your Package.def file. It generates install
statements for all the source directories that are typically needed for a package (like Modules,
Documentation/Publish, etc.), so that one can install the source package into a separate directory,
without polluting the source directory with the compiled libraries as it is common practice when using
CMake.

The GLOB_PROJECTS option tells this command to automatically install all Modules sub-directories that
it finds in the Projects directory of the current package.

With WITH_TESTCASES, also the TestCases directory is installed. Together with GLOB_PROJECTS, this
also finds TestCases sub-directories in the Projects directory.

Example:

mlab_install_package(GLOB_PROJECTS)

2.1.9. mlab_setup_current_package
mlab_setup_current_package([<source_dir>])

Sets the output directories for the current (or given) directory. It is recommended to use this
command in the CMakeLists.txt file alongside the Package.def file. It also sets the variables
MEVISLAB_PACKAGE_ROOT (pointing to the directory of the Package.def), MEVISLAB_PACKAGE_GROUP
(the package group name as found in the Package.def), and MEVISLAB_PACKAGE_NAME (the package
name as found in the Package.def).

If the files <package_group>_Settings.cmake and/or
<package_group>_<package_name>_Settings.cmake are found anywhere in the CMake module
search path, then they will be also included at this point. (Note: The cmake directory of any package is
automatically added to the CMake module search path.) This allows to set package specific compiler
settings in a central place.

If mlab_setup_current_package() has already been called successfully in a directory above the
current CMakeLists.txt, this function will do nothing (it looks for MEVISLAB_PACKAGE_ROOT).

https://cmake.org/cmake/help/latest/command/install.html

10

Chapter 3. Migrating from .pro files to
CMake files

3.1. Things one should know
There are a few pitfalls that one should be aware of when migrating from .pro files to CMake files, even
when using the .pro file converter in MeVisLab.

3.1.1. How to use the .pro file converter
MeVisLab has an interactive tool for converting .pro files into CMake files. This is accessible through

the MeVisLab main menu, select Scripting → Migration → Convert Pro Files to CMake...

This is how it looks like (with a package from the Public SDK converted):

Figure 3.1. The convertProFileToCMake user script

Select in the upper bar the directory of the .pro files that should (recursively) be converted with the
Browse... button. The directory is persistent, so there is no need to re-enter the directory for another try.

The Options... button opens a small dialog where one can define which packages should get which
CMake namespace. A sample definition could look like this:

Migrating from .pro
files to CMake files

11

MyPackageGroup/*=MyNamespace

MyPackageGroup/MySpecialPackage=MySpecialNamespace

This is also persistent, so this needs to be entered only once.

After entering this data, pressing the Convert button starts the process. The script will now first scan
all packages for package .pri files (which it will need to correctly assign CMake namespaces to the
entries in the CONFIG variable). Then it will convert the requested .pro files. The resulting files are not
written back immediately, but listed in the area below, where they can be inspected and saved manually.

The list on the left side displays all the converted files and directories. Note that one can also click
on intermediate directories, since CMakeLists.txt files are generated for these too (for the necessary
add_subdirectory statements). If there were any errors during the conversion, a number on the right
of the item will show how many errors were emitted for this file.

The area to the right of the list allows the inspection of the conversion itself. The left half shows the
original .pro file (if one selects a .pro file, for directories this stays empty). The right half shows the
resulting file under the Generated tab. If there is already a file in this place, its content is shown under the
Existing tab. The target file name is shown below this area on the right (usually it is "CMakeLists.txt",
but if more than one .pro file is in a directory, the converter will decide to work with include files that
end on .cmake).

Below this are two buttons Explore and Save. Explore will open the file explorer at the selected location.
Save will save the currently selected file. The keyboard shortcut Ctrl+S will also do this.

Note

All files are saved together with the Save All button below the directory/file tree (keyboard
shortcut Ctrl+Shift+S).

The area below the text areas shows the warnings/errors that happened for the selected file. One should
inspect any errors and modify the generated file if necessary.

3.1.2. Translating the CONFIG entries.
The entries in the CONFIG variable usually denote other libraries that the project links against.

The name stays the same for entries that are found in one's own package .pri files, but is prefixed
with the CMake namespace that was defined in the dialog opened by the Options... button. The known
exports of the PublicSDK on the other hand are converted through an internal list. These are then added
as arguments of the target_link_libraries function.

3.1.3. Unhandled CONFIG entries.
Occasionally an entry in the CONFIG variable is unknown. The converter will still treat this as a library
to link, but will prefix it with the UNKNOWN namespace. To resolve this, one needs to find either what the
correct CMake name for this library is, or if this is not a library at all and just serves some other purpose.
In this case one might perhaps use an option statement to define an optional variable, and some if
statement afterwards that uses this variable, and has the necessary statements in its body. What these
statements should look like is out of scope for the converter and this text.

3.1.4. Include directories.
Include directories in CMake are specified through the target_include_directories directive. One
important aspect of this is that the directories are specified differently for in-build use and after installation
(this assumes that the target library is installed in a completely different directory).

https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://cmake.org/cmake/help/latest/command/option.html
https://cmake.org/cmake/help/latest/command/if.html
https://cmake.org/cmake/help/latest/command/target_include_directories.html

Migrating from .pro
files to CMake files

12

For in-build use, include directories are specified as absolute paths, using the
CMAKE_CURRENT_SOURCE_DIR variable, and in a generator expression that only expands for the in-build
use. Example:

target_include_directories(MLModuleWrapperExample PUBLIC

 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>

 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/someSubDirectory>

)

These directories should be PUBLIC if other libraries build against this library.

For building against the installed library, include directories are specified as relative paths, but relative to
the installation folder. If one uses the mlab_install_headers directive, it is not necessary to do anything
if your include directory is the source directory of your library itself, or a sub-folder called include,
Include, or src, since mlab_install_headers sets this automatically. Otherwise it is necessary to
add a statement like this:

compute relative installation directory:

file(RELATIVE_PATH REL ${CMAKE_SOURCE_DIR} ${CMAKE_CURRENT_SOURCE_DIR})

target_include_directories(MLModuleWrapperExample PUBLIC

 $<INSTALL_INTERFACE:${REL}/someSubDirectory>

)

	CMake for MeVisLab - Documentation
	Chapter 1. CMake and MeVisLab
	1.1. Introduction to CMake
	1.2. Syntax in CMake files
	1.3. CMake Files in MeVisLab

	Chapter 2. CMake for MeVisLab Reference
	2.1. Custom commands
	2.1.1. find_package(MeVisLab)
	2.1.2. mlab_add_executable
	2.1.3. mlab_add_test
	2.1.4. mlab_install
	2.1.5. mlab_install_directory
	2.1.6. mlab_install_file
	2.1.7. mlab_install_headers
	2.1.8. mlab_install_package
	2.1.9. mlab_setup_current_package

	Chapter 3. Migrating from .pro files to CMake files
	3.1. Things one should know
	3.1.1. How to use the .pro file converter
	3.1.2. Translating the CONFIG entries.
	3.1.3. Unhandled CONFIG entries.
	3.1.4. Include directories.

