
1

MeVisLab Definition
Language (MDL) Reference

MeVisLab Definition
Language (MDL) Reference

2

MeVisLab Definition Language (MDL) Reference

Abstract

This document describes the MDL (MeVisLab Definition Language) of MeVisLab and was published
on 2023-09-25.

3

Table of Contents
1. MDL Syntax ... 8

1.1. Tags and Values ... 8
1.2. Tag Data Types .. 9
1.3. Groups .. 12
1.4. Variables ... 12
1.5. Including Files ... 12
1.6. Conditions and Special Statements .. 13
1.7. Comments ... 13
1.8. Naming Conventions and Limitations .. 14
1.9. Validation .. 14

2. Module (Abstract) Declaration ... 15
2.1. Interface .. 19
2.2. Description .. 23
2.3. Commands .. 24
2.4. Persistence ... 27
2.5. Deployment ... 27
2.6. MLModule ... 29
2.7. InventorModule .. 29
2.8. MacroModule ... 30
2.9. FieldListener .. 31
2.10. NetworkPanel .. 32

3. Other Module-Related MDL Features .. 34
3.1. Module Genre Definition .. 34
3.2. ModuleGroup Definition .. 35
3.3. Preloading DLLs .. 35

4. GUI Controls .. 37
4.1. GUI Example Modules in MeVisLab ... 37
4.2. Abstract GUI Controls .. 37

4.2.1. Control (Abstract) .. 37
4.2.2. Frame (Abstract) ... 44
4.2.3. Execute .. 45

4.3. Layout Group Controls ... 45
4.3.1. Window .. 45
4.3.2. Category .. 47
4.3.3. Vertical ... 48
4.3.4. Horizontal ... 48
4.3.5. Table .. 49
4.3.6. Grid .. 52
4.3.7. ButtonBox ... 54
4.3.8. Splitter .. 54
4.3.9. Box .. 57
4.3.10. ScrollView ... 58
4.3.11. TabView ... 59

4.3.11.1. TabViewItem .. 62
4.3.12. FreeFloat .. 63

4.4. User Input GUI Controls .. 64
4.4.1. Field ... 64
4.4.2. FieldLabel ... 68
4.4.3. Button .. 68
4.4.4. ToolButton .. 70
4.4.5. CommonButtonGroup .. 72
4.4.6. PushButtonGroup .. 75
4.4.7. RadioButtonGroup ... 75
4.4.8. ToolButtonGroup ... 76
4.4.9. ButtonBar ... 76

MeVisLab Definition
Language (MDL) Reference

4

4.4.10. CheckBox ... 78
4.4.11. ComboBox .. 79
4.4.12. MenuBar ... 81
4.4.13. ColorEdit .. 81
4.4.14. LineEdit .. 82
4.4.15. NumberEdit ... 83
4.4.16. VectorEdit ... 84
4.4.17. DateTime .. 86
4.4.18. Slider .. 86
4.4.19. IntervalSlider ... 87
4.4.20. ThumbWheel .. 88
4.4.21. TextView .. 89
4.4.22. HyperText ... 91
4.4.23. HyperLabel ... 92
4.4.24. ListBox ... 93
4.4.25. ListView .. 94
4.4.26. IconView ... 98

4.5. Decoration GUI Controls .. 100
4.5.1. Label .. 100
4.5.2. Image ... 102
4.5.3. Separator ... 102
4.5.4. Empty ... 102
4.5.5. ProgressBar .. 103

4.6. Menu GUI Controls .. 103
4.6.1. PopupMenu .. 104
4.6.2. SubMenu .. 104

4.6.2.1. MenuItem ... 105
4.6.2.2. TouchBarItem ... 106
4.6.2.3. Separator ... 106

4.7. Complex GUI Controls ... 106
4.7.1. Panel .. 106
4.7.2. DynamicFrame .. 107
4.7.3. Viewer .. 108
4.7.4. PathBrowser ... 109
4.7.5. DicomBrowser and DicomBrowserTable ... 110
4.7.6. MoviePlayer .. 112
4.7.7. ScreenshotGallery ... 112
4.7.8. WebEngineView .. 112
4.7.9. WebView .. 114
4.7.10. GraphicsView .. 116
4.7.11. ItemModelView .. 117

4.8. Event Handling Controls ... 124
4.8.1. Accel .. 124
4.8.2. EventFilter .. 124

4.9. Other Design Options .. 126
4.9.1. Align Groups ... 126
4.9.2. RichText ... 127
4.9.3. Styles ... 129

4.9.3.1. DefineStyle .. 130
5. Translations ... 133
6. Test Cases .. 134
Index ... 135

5

List of Figures
4.1. Category vs. Vertical ... 47
4.2. TestVerticalLayout Module ... 48
4.3. TestHorizontalLayout Module ... 49
4.4. TestTableLayout Module .. 52
4.5. TestGridLayout Module .. 54
4.6. TestSplitterLayout Module .. 57
4.7. TestBoxLayout Module .. 58
4.8. ScrollView Example ... 59
4.9. TestTabViewLayout Module ... 62
4.10. VectorEdit Example ... 85
4.11. IntervalSlider Example ... 88
4.12. ThumbWheel Example ... 89
4.13. TestHyperText Module ... 92
4.14. TestListBox Module ... 94
4.15. TestListView Module .. 98
4.16. TestIconView Module ... 100
4.17. ProgressBar Example .. 103
4.18. TestPopupMenu Module ... 104
4.19. TestViewers Module ... 109
4.20. TestEventFilter Module ... 126
4.21. TestStyles Module ... 130

6

List of Tables
2.1. Value formats by field type .. 21

7

List of Examples
4.1. Window ... 46
4.2. Vertical .. 48
4.3. Horizontal .. 49
4.4. Table .. 51
4.5. Grid .. 53
4.6. Splitter .. 56
4.7. Box ... 58
4.8. ScrollView ... 59
4.9. TabView .. 61
4.10. ComboBox .. 81
4.11. MenuBar ... 81
4.12. ColorEdit ... 82
4.13. LineEdit ... 83
4.14. NumberEdit ... 84
4.15. VectorEdit ... 85
4.16. DateTime .. 86
4.17. Slider .. 87
4.18. IntervalSlider ... 88
4.19. ThumbWheel ... 89
4.20. HyperText ... 92
4.21. HyperLabel .. 93
4.22. ListBox .. 94
4.23. ListView .. 97
4.24. IconView ... 100
4.25. ProgressBar ... 103
4.26. PopupMenu, SubMenu and MenuItem .. 103
4.27. Panel .. 107
4.28. Viewer ... 109
4.29. EventFilter ... 126

8

Chapter 1. MDL Syntax
This is a short introduction to the MeVisLab Definition Language (MDL), in which all *.def, *.script
and various other files for the MeVisLab are written. The MDL is a configuration and layouting language,
not a real programming language. You can set tags and values for the tags, but there are some
extensions to this static scheme.

If found in *.def or *.script files, the MDL is used for layouting the GUI of modules. That is the
arranging of fields implemented in C++ on a module panel or adding new fields and functionality to
modules, especially to macro modules.

Besides just layouting the GUI for a module, the MDL offers adding commands that call scripting
methods (Python) on occasions like altering a field's value or opening a module's panel. The MDL
controls can be scripted with Python, a scripting link into the MeVisLab Scripting Reference is given
where appropriate.

MDL is tag-based. Typically, a tag is set to a certain value or to a group of tags. There are also special
tags to conditionally parse parts of a file or to test for miscellaneous conditions.

1.1. Tags and Values
Setting a tag is simple:

TAGNAME = VALUE

The equal-sign ("=") has to be used between every tag and its value, except for groups, where it is
optional (see "Groups"). TAGNAME as well as VALUE need to be a single token. If a token should
contain whitespace, there are various ways to quote this value.

The most simple method is to enclose a value containing whitespace in quotes:

myTag = "Example with whitespace and \"quotes\" and a \\ backslash "

As you can see, quotes and backslashes are escaped with backslashes, which can be annoying when
you need to use many of them. There are two alternative ways to enclose long values that contain
special characters:

// enclosing with "* *"

droppedFileCommand = "*py: ctx.field("fileName").value = args[0] *"

// enclosing with @@

droppedFileCommand = @@py: ctx.field("fileName").value = args[0] @@

Inside strings starting with a quote-star and ending with a star-quote or inside of strings enclosed in
double-@ (at) you can use all characters without escaping them except for the backslash char. Only if
you want to use a sequence of characters that is the same as the ending of the used delimiters, you
need to escape them with backslashes.

If you use any kind of quoting, you need to escape backslashes with a double backslash (\\).

Overview of quoting and the characters you need to escape with a backslash:

" ... "

escape " with \" or use ' in Python instead

escape \ with \\

"* ... *"

escape *" with *\"

MDL Syntax

9

escape \ with \\

@@ ... @@

escape @@ with @\@

escape \ with \\

1.2. Tag Data Types
The different tags in the MDL have different data types. Those data types are listed here with a general
explanation. A more detailed explanation can be found at the actual tags.

STRING

An arbitrary description string. If the string contains spaces, it has to be enclosed in quotes.

The tag data of type STRING may be translated to other languages by an internationalization
mechanism.

This type is used as a control's name, as its title, comment, whatsThis- and toolTip text.

Examples:

title = SomeExampleTitle
comment = "This example comment contains spaces"

STRINGLIST

A list of strings, separated by commas or spaces.

This type is used for the genre and group and various other tags.

Examples:

genre = Lung
group = "Release, LungPrivate"

AUTHORS

A list of comma separated strings. The authors have to be written as "FirstName LastName".

NAME

A unique identifier which must not contain spaces.

This type is used for identifying objects across script, scripting and C++ code. Tags such as item,
module, DLL, field panel or deprecatedName are of this type.

NAMELIST

A list of unique identifiers, separated by commas. The unique identifiers must not contain spaces.

This type is used for the filter tag of the EventFilter.

To get a list of the possible values of the filter tag, use the auto-completion of the texteditor MATE.

BOOL

A Boolean value.

Possible values are Yes, No, True, False, On and Off.

UINT

An unsigned integer value.

INT

An integer value.

MDL Syntax

10

FLOAT

A floating point value.

ENUM

One of a fixed list of unique identifiers.

Have a look at the detailed description of tags of type ENUM for the possible values and the default
value. Also, the possible values are shown in MATE's auto-completion.

FIELD

A unique and existing identifier of a field.

This type is used, i.e., for the field tag of the Accel.

FIELDLIST

A list of unique and existing field identifiers, separated by commas.

This type is used for the list of fields in the Persistence description.

FIELDEXPRESSION

An expression that is based on field values.

This type is used for the tags min, max, dependsOn, and visibleOn.

The following operators are supported (precedence in order of appearance):

• ()

parentheses

• ||

logical or expression (lazy-evaluated)

• &&

logical and expression (lazy-evaluated)

• == != < <= > >=

comparison, Boolean fields and expressions are compared as Boolean, numbers are compared
as numbers and everything else is compared as strings. If the right hand side is a regexp, the left
hand expression is matched to the regexp.

• + -

addition and subtraction; numbers are handled as expected, if one of the arguments is not a
number the values are concatenated as strings resp. the second argument is removed as string
from the first argument string if found.

• *

multiplication, only applicable on number arguments

• -

unary minus that can be used in front of parentheses and numbers or number fields

• !

unary not that can be used in front of parentheses and Boolean fields

• [sequence of digits (with optional . somewhere but not in the first place)]

MDL Syntax

11

numerical value

• fieldName

the name of a field (may also be a qualified name with modulename.fieldname)

Bool Fields are interpreted as their bool value, all other fields are interpreted as their string or
number value, depending on the operation applied.

• "String"

a string constant that is given in quotes. Note that there is no way of quoting " inside of a string
at the moment.

• /regexp/[i]

a regular expression, the optional i after the closing / makes the expression case insensitive

Regular expression can only be used on the right hand side of a comparison.

Note that there is no way of quoting / inside of a string at the moment.

Some operations are provided as functions, i.e., like

functionName(argument0, ...)

• min(): returns minimum value of all arguments

• max(): returns maximum value of all arguments

• abs(): returns absolute(positive) value of argument

• if(): returns second argument if first argument evaluates to true, otherwise the third argument
is returned

PATH

A relative or absolute path to a directory. If it is a relative path, useful variables are listed in
Section 1.4, “Variables”.

The path delimiter is a "/", independent of the platform.

FILE

Same as PATH but with a specified file. This file can be, i.e., a scripting file (.py), an HTML file
(.html) or a network file (.mlab).

SCRIPT

A unique name of a scripting function implemented in a separated and included scripting file or a
single line of scripting.

COLOR

A color definition, explained in more detail here.

KEYSEQUENCE

A keysequence or shortcut to trigger certain functionality. The set string may be translated to other
languages by an internationalization mechanism.

A KEYSEQUENCE is used in menus and in the Accel.

RICHTEXT

A string containing HTML formatting.

This type is used in the TextView or similar controls.

MDL Syntax

12

A table with all supported HTML tags can be found in the chapter RichText.

FORMATSTRING

A C-like expression for formatting a (floating point) number.

Have a look at the NumberEdit control for more information.

REGEXP

A regular expression for string matching.

This type is used in the LineEdit control for validating the entered string.

QTSLOT

A Qt-slot which is triggered if a control emits a signal.

This type is used in the MenuItem.

1.3. Groups
Group tags are used for hierarchical tags. This means that you can build not only flat tag lists but also
complete tree hierarchies. A group tag starts with a tag name, an optional value and an opening curly-
brace, it ends with a closing curly-brace. Inside of the braces you can set normal tags with values or
other group tags:

myGroup exampleGroup {
 normalTag = "This is a normal tag"
 groupInside {
 insideTag = "Another example tag"
 }
}
tagOnlyGroup {
 normalTag = "This group has no value"
}

Contrary to normal tags, a group tag does not need to have a value. The second example above shows
a group that has only the tag name but no value, before the group is opened.

1.4. Variables
MDL has some predefined variables that are useful for its purposes. To get the value of a variable, write
its name inside a pair of parentheses with a dollar sign prefix: $(VARNAME).

The following variables are defined:

LOCAL - Contains the full path of the currently parsed file.
HOME - Home directory of the user.
PackageIdentifier - Unique name, the structure is: "MLAB_PackageGroup_PackageName"

In addition to these predefined variables, you can get the values of all tags from the mevislab.prefs file.

Variables in MDL can be escaped by writing $(*VARNAME*), which expands to $(VARNAME).

1.5. Including Files
MDL allows you to include files with the #include statement. This is equivalent to pasting the given file
at the position of the include statement:

#include $(LOCAL)/anotherfile.script

The same file can be included multiple times at different places in an MDL file. It is recommended
to name included files either *.script or *.inc. You should not use the *.def extension, because this is
reserved for module definition files and would be read automatically by MeVisLab on startup.

MDL Syntax

13

1.6. Conditions and Special Statements
MDL allows to parse or skip parts of files depending on conditions. Additionally there are some
statements that allow simple debugging and printing of messages.

#ifset and #ifnset are used to test if a variable is set to one of the following values: true, on, yes, 1 .
If the variable is not set or has a different value, the block is not parsed.

The variables can be defined in the mevislab.prefs file.

#ifset ApplicationAdvanced {
 // if $(ApplicationAdvanced) is defined and set to true, on, yes or 1, parse inside this block
 Field advancedField {}
}
#ifnset ApplicationAdvanced {
 // if $(ApplicationAdvanced) is undefined or not set to true, parse the following block
 Field normalField {}
}

#ifdef and #ifndef are used to test for existence of variables (and not its value)

#ifdef CPU {
 // if $(CPU) is defined, parse inside this block
 cpuTag = "$(CPU)"
}
#ifndef CPU {
 // if $(CPU) is undefined, parse the following block
 cpuTag = "CPU unknown"
}

The #if statement is another conditional for parsing blocks. With #if you can test the boolean value
of a variable or compare two variables as strings or numbers or compare a variable with a static string.
The following operations are possible for compare: <, >, ==, >=, <=, !=

#if $(DEBUG) {
 // Parse this if DEBUG is a variable and has the boolean value true
 debugTag = "Debugging is fun"
}
#if "$(VERSION) >= $(MINVERSION)" {
 // If the variables can be parsed as floating point numbers, make numeric comparison
 // otherwise a lexical comparison is done
 featureForVersion = true
}
#if "$(HOME) == $(LOCAL)" {
 // Parse this if the current MDL file resides in the user's home directory
 myHome = "is my castle"
}

The #echo statement allows you to print out the value of variables or any other string to the console,
which can be very useful for debugging:

#if $(DEBUG) {
 #echo "HOME-Dir is $(HOME)"
}

The #abort statement is used to print an error message and to stop the parser:

#ifndef DefaultFont {
 #abort "No default font available!"
}

1.7. Comments
Comments in MDL are the same as in C++:

// This is a comment before a tag
myTag = myValue
/*
 The following tags are not parsed, because they are inside a comment block
 tag01 = unparsed
 tag02 = unparsed
*/
anotherTag = anotherValue // Comment after Tag/Value Pair

MDL Syntax

14

Comments can be placed anywhere in the MDL file, but not between a tag and its value.

1.8. Naming Conventions and Limitations
Although it is not needed by the parser, it is recommended to use tag names without whitespace and to
separate words in tag names with uppercase characters. Both of the following examples are allowed,
but the latter is recommended:

"Tag with four words" = "The Value"
tagWithFourWords = "The Value"

You can use any character sequence for tag names as long as they are parsable as one tag. To start
tag names with characters that end or start new syntactic constructs, for example "{" or "=", you have
to enclose them in quotes or use the same methods as for values.

1.9. Validation
MeVisLab contains a complete definition of allowed MDL tags and throws warnings if the validation of
an MDL script fails. Usually it adds a link to the online documentation so that you can see what tags
are possible in the scope you are in.

15

Chapter 2. Module (Abstract)
Declaration
MeVisLab supports three different types of modules, which are derived from an abstract module:

• MLModule (an image processing module using the ML)

• InventorModule (a visualization module derived from OpenInventor)

• MacroModule (a macro module that encapsulates a internal network and has its own panel/script)

The following module tags are supported by all module types. Details on the different modules are given
in the following sections.

Dynamic scripting: MLABModule

[MLModule|InventorModule|MacroModule] NAME {

 genre = STRINGLIST
 author = AUTHORS
 status = STRING
 group = STRINGLIST
 comment = STRING
 keywords = STRING
 exampleNetwork = FILE
 seeAlso = STRING
 documentation = FILE

 hasTranslation = BOOL [No]
 translationModules = STRINGLIST
 translationLanguages = STRINGLIST

 deprecatedName = STRING
 externalDefinition = FILE
 associatedTests = STRINGLIST
 relatedFile = FILE

 activeInputIndex = FIELDEXPRESSION
 activeOutputIndex = FIELDEXPRESSION

 exportedWindow = STRING

 Interface {
 Inputs {
 Field NAME {...}
 ...
 }

 Outputs {
 Field NAME {...}
 ...
 }

 Parameters {
 Field NAME {...}
 ...
 }
 }

 Description {
 Field NAME {...}
 ...
 }

 Commands {

 source = FILE

 // more source tags...

 importPath = PATH

 // more importPath tags...

Module (Abstract) Declaration

16

 initCommand = SCRIPT
 wakeupCommand = SCRIPT
 droppedFileCommand = SCRIPT
 droppedFilesCommand = SCRIPT

 FieldListener [FIELD] { ... }
 }

 Deployment {

 directory = PATH
 ...
 file = FILE
 ...
 module = NAME
 ...
 DLL = NAME
 ...
 }

 Persistence {

 fields = FIELDLIST

 Module NAME {
 fields = FIELDLIST
 }
 }

 NetworkPanel {

 info = EXPRESSION

 Button [FIELD} { ... }
 }

 Window [NAME] {
 ...
 }

 // more windows...

}

genre = GENRENAMES

specifies one or more genre this module is in. Genres are separated by "," and have to be declared
in the global genre file of MeVisLab. If a given genre is not defined, you will get a validator warning
and the module is put into the "Other" genre. The genre tag is used to generate automatic entries
in the Modules menu of MeVisLab and in the documentation. A module can be in multiple genres.

Example: genre = "Image, Diffusion"

see also: Section 3.1, “Module Genre Definition”

author = AUTHORS

sets the author(s) of the module, starting with the primary author. Authors have to be separated by
"," and should contain first and last name.

Example: author = "Author1, Author2"

However, if you list a single author, do not use the format "Last, First" as this results in a pair of
authors with just one last name each. Just state the author's name with "First Last".

Warning

Do not write anything except the authors' names in this tag, because the names are
used for automatic documentation generation.

status = STRING

sets the status of the module.

Module (Abstract) Declaration

17

Currently used words are:

• Stable

• Work-in-progress

• Test

• Deprecated

group = STRINGLIST

sets a list of group names separated by ",". If no group is set, the module is always visible in
MeVisLab. If a list of groups is set, the module is only visible in MeVisLab if one of the groups is
enabled in the MeVisLab prefs file (mevislab.prefs) via the "EnabledGroups" tag.

Note

Visible means that the user can find the module in the search dialogs and in the Modules
menu. The modules can still be loaded from a saved network or inside an application,
even if they are not visible.

Special groups:

- Release : if the string contains the keyword "release", the module is visible in the MeVisLab release
version (otherwise it is not visible in the release, regardless of the other groups!)

- Deprecated : if the string contains the keyword "deprecated", you have to enable the "deprecated"
tag to see the modules, regardless of the other groups

Examples:

group = Deprecated // module will only be visible if "EnabledGroups" contains

"deprecated"

group = Release // module will be visible in MeVisLab release

group = LungPrivate // module will only be visible if "EnabledGroups" contains

"LungPrivate" and if MeVisLab is not in release mode

group = Release, LungPrivate // module will only be visible if "EnabledGroups"

contains "LungPrivate"

comment = STRING

sets a short comment which is shown in the MeVisLab help system and on the network.

(We recommend that you only write a short comment here and use the module documentation for
further information.)

documentation = FILE

This tag is deprecated since MeVisLab 2.2.

It was used for referencing a HTML module help page that was not found at the default location

$(LOCAL)/html/ModuleName.html

The module help is now written with MATE and automatically generated by MeVisLab.

For more information: Section 26.9, “Module Help Editor”

Module (Abstract) Declaration

18

keywords = STRING

sets keywords that are used in the MeVisLab search to find a module by its keywords. The keywords
are separated by " ".

Make sure that you only use adequate keywords, otherwise your module will be found more often
than wanted. Having no keywords decreases the possibility that someone finds the module.

You do not need to set any part of a module's name as keyword, it does not help the least. For
example, refrain from setting "examiner viewer" as keywords for the module SoExaminerViewer.

exampleNetwork = FILE

sets an example MeVisLab network that the user can open to see how the module could be used
in connection with other module.

This tag can be used multiple times for a module to link to a number of example networks.

seeAlso = STRING

sets a reference to other modules that are related to this module, separated by " ".

Example: seeAlso = "SoView2D SoOrthoView2D"

externalDefinition = FILE

defines a module's interface, GUI windows, and field properties in an external file, typically with the
file extension ".script". It is advised to use the naming convention $(LOCAL)/ModuleName.script if
you use this tag. The advantage of using this feature is that the MDL file needs only be parsed when
the module is really created and not when MeVisLab is started. Make sure that you still provide
the simple tags (author, comment, etc.) in the *.def file so that they are available when MeVisLab
is started.

Example: externalDefinition = $(LOCAL)/ModuleName.script

Tip

This is typically used in MacroModules, especially when they are applications, to avoid
that MeVisLab reads the whole application definition on startup.

associatedTests = STRINGLIST

specifies a list of functional tests that are associated to the module.

Use the macro module TestCaseManager to generate new tests or to browse and modify existing
tests.

See the document TestCenter Manual for more information about functional test cases for specific
modules.

hasTranslation = BOOL

defines if this module has translations. If a module has translations, then all MDL strings of that
module and all occurrences of ctx.translate() in its Python source files will be collected and written
to a *.ts file. See Translations for more information.

translationModules = STRINGLIST

defines a comma separated list of modules that also have translations. See Translations for more
information.

translationLanguages = STRINGLIST

defines a comma separated list of language initials. For example, "en,de,it". See Translations for
more information.

deprecatedName = STRING

defines an old (deprecated) name for this module, so that networks that contain a module with this
name can still be loaded even if the module name was changed.

Module (Abstract) Declaration

19

relatedFile = FILE

references a file that belongs to this module and should appear in the list of related files in the module
context menu (besides the automatic entries). It is advised to reference files relative to $(LOCAL).
The tag can be used multiple times.

Example: relatedFile = $(LOCAL)/../SomeSharedConfigFile.xml

activeInputIndex = FIELDEXPRESSION

the given field expression is evaluated and the calculated integer index is used to highlight the
active input connector (e.g., for modules like Switch). Negative values mean that no connector will
be active, with the exception of -3, which means that all connectors are active.

activeOutputIndex = FIELDEXPRESSION

the given field expression is evaluated and the calculated integer index is used to highlight the active
output connector (e.g., for modules like BaseSwitch). Negative values mean that no connector will
be active, with the exception of -3, which means that all connectors are active.

exportedWindow = STRING

Note

Only evaluated by the MeVisLab Web Toolkit, which is not part of the public SDK.

gives the names of GUI panels that should be available remotely. This may also be the name
of a panel of a sub-module by giving the name as submodulename.panelname. This tag may be
used multiple times. If the given panels reference fields of sub-modules, these fields are exported
automatically as fields of the remote module under the name submodulename.fieldname.

2.1. Interface

The interface section is used to declare any extra fields of a module. While it is possible to use the
interface section in a ML/InventorModule, it is typically only used for MacroModule, since the ML and
Inventor modules get their fields automatically from C++. If you want to add a description for a C++ field,
refer to the Description section.

The interface section can contain three subgroups: Inputs, Outputs and Parameters. Inputs and Outputs
are typically Image, SoNode or MLBase fields, while the Parameters section typically holds parameter
fields like floats, vectors, or color. The declared fields can be both standalone script fields or they can
alias an internal field of the internal network of a MacroModule.

// script field:
Field NAME {
 type = ENUM
 value = STRING
 comment = STRING
 hidden = BOOL [No]
 priority = INT [100]
 editable = BOOL [Yes]
 persistent = BOOL [Yes]
 isFilePath = BOOL [No]
 min = FIELDEXPRESSION
 max = FIELDEXPRESSION
 internalName = FIELD
 allowedTypes = STRING
 legacyValue = STRING
 visibleOn = FIELDEXPRESSION
 dependsOn = FIELDEXPRESSION

 // for enums:
 items {
 item NAME {
 title = STRING
 deprecatedName = STRING

Module (Abstract) Declaration

20

 // more deprecatedName tags
 }
 ...
 }
 // old deprecated enum syntax:
 values = STRING
}

type = ENUM

defines the type of the field (is automatically given if internalName is used).

Possible values:

• Bool

• Color

• Double

• Enum

• Float

• Image

• Integer

• Matrix

• MLBase

• Plane

• Rotation

• SoNode

• String

• Trigger

• Vector2, Vector3, Vector4

value = STRING

sets a default value for the field (will only be assigned when a module is newly created, NOT on
reload of a module), will be overwritten by a stored value when loaded from a network.

Module (Abstract) Declaration

21

Table 2.1. Value formats by field type

Type Value Format Example

Bool true, yes, 1, and on evaluate to
true (case insensitive), all other
strings to false

Yes

Color three floating point values in the
range 0.0 to 1.0

"1.0 0.5 0.0"

Double a single floating point value 0.33

Enum the name of an enum item item2

Float a single floating point value 0.33

Image n/a: images are programatically
specified

n/a

Integer a single integer value 7

Matrix 16 floating point values, if
less are given, then missing
elements are taken from the
identity

"1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0"

MLBase n/a: base objects are
programatically specified

n/a

Plane 4 floating point values "12.0 14.0 5.23 33.0"

Rotation 4 floating point values "9.0 2.22 7.33 55.2"

SoNode n/a: nodes are programatically
specified

n/a

String a string, which must be quoted
if it contains spaces

"a string with spaces"

Trigger n/a: a trigger has no value, but
triggers an action

n/a

Vector2, Vector3, Vector4 2, 3 or 4 floating point values "234.33 221.0 223.0 11.23"

legacyValue = STRING

sets a default value for the field when a module is loaded from a network and no value was specified
for the field in the saved network. This allows to give a new default value with the value tag and to
keep old networks working by setting a compatible legacyValue for old networks.

comment = STRING

sets a comment describing the field (which is shown at the input/output tool tip).

hidden = BOOL (default: No)

sets whether the field should be visible in the MeVisLab network (this can be used to hide existing
input/output images).

priority = INT (default: 100)

sets the notification priority of the field. A value of 0 means that the field has high priority and GUI
controls depending on this field will be updated immediately when the field changes.

editable = BOOL (default: Yes)

sets whether the field should be editable by default. Also sets the persistent attribute to the same
value (if not specified explicitly).

persistent = BOOL (default: Yes)

sets whether the field value should be stored in networks (save to disk and copy+paste).

Module (Abstract) Declaration

22

isFilePath = BOOL (default: No)

Only applicable for fields of type String. Marks the field as containing a file path. When saving to
a network file the value of this field will be attempted to be expressed with a defined set of path
variables like $(NETWORK), to make the network relocatable. Also provides Field controls with an
automatic browse button.

min = FIELDEXPRESSION

sets a minimum value for the field, only works on Number fields. The value can be given as a float
value or as an expression containing other fields which provides and updates the minimum value
if these fields change.

max = FIELDEXPRESSION

sets a maximum value for the field. It only works on Number fields. The value can be given as a
float value or as an expression containing other fields which provides and updates the minimum
value if these fields change.

visibleOn = FIELDEXPRESSION

sets an expression that is used to decide if the field should be visible on the GUI. In case of an input/
output field, the field's connector on the network is shown/hidden depending on the expression. In
case of a parameter field, the expression is used as visibleOn default for all MDL GUI controls that
display this field. A visibleOn tag in a GUI control overrides the field's default for that GUI control.

dependsOn = FIELDEXPRESSION

sets an expression that is used to decide if the field should be enabled/disabled on the GUI. In case
of an input/output field, the field's connector on the network is rendered in an active/non-active state
depending on the expression. In case of a parameter field, the expression is used as dependsOn
default for all MDL GUI controls that display this field. A dependsOn tag in a GUI control overrides
the field's default for that GUI control.

internalName = FIELD

defines that the field should alias an internal field of the internal network of a macro module.

If the internal name is given, the type of the generated field cannot be selected and is given by
the internal field.

allowedTypes = STRING

gives the names (separated by whitespace) of Base types this field accepts or provides. Only valid
for fields of type MLBase.

This is used by MeVisLab as a hint which MLBase fields can be connected. Specifying this should
not be necessary if internalName was given for a field, as the type information of that field will be
used in this case. Note that this is only a hint, you will still be able to set any Base object by scripting.

As long as the specified type(s) is/are not loaded by the run-time type system of MeVisLab, the
type(s) can not be resolved and MLBase fields of any type are allowed to be connected to this field.
Base types are automatically loaded if other modules that use this type are loaded in MeVisLab.

deprecatedName = NAME

sets an old name to the field which allows to rename fields in MacroModules/C++ and keep old
networks and scripts working. If any deprecatedName appears anywhere in a GUI description, a
stored network or in scripting, it is automatically mapped to the name of this field.

(Any number of deprecatedName tags can be set. They are all parsed.)

items

specifies the enumeration items if the field is of type Enum.

item = NAME

specifies the (token) name of the item.

title = STRING

Module (Abstract) Declaration

23

specifies the user visible name of the item.

deprecatedName = STRING

specifies an old deprecated name for the item which can be used on setStringValue and which
causes the enum to take the value of item instead of the old value.

This tag is used to allow old networks and scripts to work even if enum items have changed
or have gone away completely.

values = STRING

defines the enum values in a comma-separated list

This tag is deprecated and should no longer be used, use items instead.

2.2. Description

The Description section can be used in addition to the Interface section to assign extra properties to
existing C++ fields. No new fields can be created in the Description section, only properties can be
added to already existing fields.

Description {
 Field NAME {
 value = STRING
 legacyValue = STRING
 comment = STRING
 hidden = BOOL [No]
 priority = INT [100]
 editable = BOOL [Yes]
 persistent = BOOL [Yes]
 isFilePath = BOOL [No]
 min = FIELDEXPRESSION
 max = FIELDEXPRESSION
 visibleOn = FIELDEXPRESSION
 dependsOn = FIELDEXPRESSION
 deprecatedName = NAME
 removed = BOOL [No]

 // for enums:
 items {
 item NAME {
 title = STRING
 }
 deprecatedName = STRING

 // more deprecatedName tags
 ...
 }
 ...
 }
}

value = STRING

sets a default value for the field (will only be assigned when module is newly created, NOT on
reloading a module), will be overwritten by a stored value when loaded from a network.

Note

If you specify a value in both the Interface section and the Description section, the value
from the Description section will win.

legacyValue = STRING

sets a default value for the field when a module is loaded from a network and no value was specified
for the field in the saved network. This allows to give a new default value with the value tag and to
keep old networks from working by setting a compatible legacyValue for old networks.

comment = STRING

sets a comment describing the field (which is shown at the input/output tool tip).

Module (Abstract) Declaration

24

hidden = BOOL (default: No)

sets whether the field should be visible in the MeVisLab network (this can be used to hide existing
input/output images).

priority = INT (default: 100)

sets the notification priority of the field, a value of 0 means that the field has high priority and GUI
controls depending on this field will be updated immediately when the field changes.

editable = BOOL (default: Yes)

sets whether the field should be editable by default. Also sets the persistent attribute to the same
value (if not specified explicitly).

persistent = BOOL (default: Yes)

sets whether the field value should be stored in networks (save to disk and copy+paste).

isFilePath = BOOL (default: No)

See Interface isFilePath tag.

min = FIELDEXPRESSION

See Interface min tag.

max = FIELDEXPRESSION

See Interface max tag.

visibleOn = FIELDEXPRESSION

See Interface visibleOn tag.

dependsOn = FIELDEXPRESSION

See Interface dependsOn tag.

deprecatedName = NAME

sets an old name to the field which allows to rename fields in MacroModules/C++ and keep old
networks and scripts working. If the deprecatedName appears anywhere in a GUI description, a
stored network or in scripting, it is automatically mapped to the name of this field

(any number of deprecatedName tags can be given. They are all parsed)

removed = BOOL (default: No)

declares this field as being removed and avoids warnings when a network is loaded which contains
stored values for the (removed) field.

items

specifies the enumeration items if the field is of type Enum.

item = NAME

specifies the (token) name of the item.

title = STRING

specifies the user visible name of the item.

deprecatedName = STRING

specifies an old deprecated name for the item which can be used on setStringValue and which
causes the enum to take the value of item instead of the old value.

This tag is used to allow old networks and scripts to work even if enum items have changed
or have gone away completely.

2.3. Commands

Module (Abstract) Declaration

25

The commands section is used to add script files and commands to the module.

The general sequence for a module initialization is:

1. Initialization of Modules fields

2. Script call to initCommand

3. Creation of FieldListeners

4. Restoration of outside field connections to other modules in a loaded network

5. Script call to wakeupCommand

The detailed order is:

1. Creation of the internal C++ ML/Inventor class or loading the internal MeVisLab network of the
MacroModule

2. Reading internal fields from C++

3. Creation of self/instanceName fields

4. Creation of Interface fields (given in the Interface section) and parsing of tags in the Interface
and Description section (except for min/max values)

5. Restore of persistent stored fields (via setStringValue)

6. Loading of Python given in Commands source tags

7. Creation of min/max values (from the Interface and Description section)

8. Script call to initCommand

9. Creation of FieldListeners given in the Commands section

10. Field connections to other modules in a network that is restored (from disk or paste buffer) are done

11. Script call to wakeupCommand

Commands {
 source = FILE

 // more source files...

 importPath = PATH

 // more importPath tags...

 initCommand = SCRIPT
 wakeupCommand = SCRIPT
 finalizeCommand = SCRIPT
 droppedFileCommand = SCRIPT
 droppedFilesCommand = SCRIPT

 storingToUndoHistoryCommand = SCRIPT
 restoredFromUndoHistoryCommand = SCRIPT

 moduleItemCreatedCommand = SCRIPT

 runApplicationCommand = SCRIPT

 FieldListener [FIELD] { ... }
 ...
}

source = FILE

sets a script file to be loaded in the script context of this module. Python variables, classes and
functions declared in the file are available in all script calls to this module. This tag can be used for
multiple files, the files are parsed in the order of declaration

Module (Abstract) Declaration

26

The file extension .py specifies Python script files.

Example: source = $(LOCAL)/ModuleName.py

importPath = PATH

adds a directory to the import path of the module's Python package. Each instance of a MeVisLab
module has its own Python package containing different instances of the specified source modules.
Python modules and packages from the import path must be imported relatively (see section Intra-
package References of the Python documentation).

Example: importPath = $(LOCAL)/../../Wherever/YourSharedPythonModules

initCommand = SCRIPT

defines a script command that is called when the module is created on a network. At the time of this
call, the field connections to other modules in the network have not yet been established.

wakeupCommand = SCRIPT

defines a script command that is called after the module is created on a network and all other
modules have been also created and after all field connections have been established.

finalizeCommand = SCRIPT

defines a script command that is called when the module's script context is deleted. It can be used
to cleanup resources that need to be removed or cleared.

This command is called when a module is reloaded or when it is finally deleted, which may occur
later than expected because of the undo/redo buffer.

(Typically all Python resources are cleaned automatically, so you will probably never need this
command.)

droppedFileCommand = SCRIPT

defines a script command that is called when the user drops a file, directory or URL on the module's
box on the network (e.g., used in ImageLoad to accept dropped filenames).

droppedFilesCommand = SCRIPT

defines a script command that is called when the user drops files, directories or URLs on the
module's box on the network (e.g., used in ImageLoad to accept dropped filenames).

storingToUndoHistoryCommand = SCRIPT

defines a script command that is called when a module is removed from the network and placed
into the undo history

restoredFromUndoHistoryCommand = SCRIPT

defines a script command that is called when a module is readded to the network from the undo
history

moduleItemCreatedCommand = SCRIPT

defines a script command that is called when the network model item gets created. This typically
happens when then network becomes visible in the MeVisLab IDE.

runApplicationCommand = SCRIPT

defines a scripting command that is called when a macro module is started as an application, before
the macro's window is shown.

Note

This command is only available with a valid ADK license. Have a look at the ADK
documentation, chapter Advanced Commands for further information.

FieldListener [FIELD]

the Commands section can contain multiple FieldListeners, see FieldListener for details on what a
FieldListener can be used for. The listeners declared in the commands section are active after the

https://docs.python.org/3/reference/import.html#packages
https://docs.python.org/3/tutorial/modules.html#intra-package-references
https://docs.python.org/3/tutorial/modules.html#intra-package-references

Module (Abstract) Declaration

27

module has been created until the module is deleted. This is typically used to provide functionality
to a MacroModule's fields and react on field changes which are independent of the user interface.
If you want to have a FieldListener that changes the user interface, use a FieldListener inside of a
GUI control somewhere in a Window.

Note

Scripting methods and functions without parameter can be called by a command by a simple:

command = methodName

If the called method or function needs parameters, the scripting string needs to be escaped:

command = "* py: methodName(1,2,3) *"

2.4. Persistence

This sections allows to make the values of internal fields of a MacroModule persistent. It allows to specify
a list of fully qualified field names as well as fields grouped by internal modules. In contrast of defining a
field on the interface of the macro module, only its value is stored and restored, the persistent fields are
not available on the macro module interface. A typical use case is making internal settings persistent.

Persistence {
 fields = FIELDLIST
 ...
 Module NAME {
 fields = FIELDLIST
 ...
 }
 ...
}

fields = FIELDLIST

defines the fields that are to be stored as a comma-separated list, typically modulename.fieldname
(the tag can be used multiple times).

Module = NAME

defines a section for fields of the given module (the tag can be used multiple times). The fields
listed in the Module tag are given without the leading module name, since that is already given by
the section.

2.5. Deployment

This section allows to tell MeVisLab about dynamic dependencies of the module that are required when
the module should be deployed to another computer. The ModuleDependencyAnalyzer module allows
to find most dependencies automatically, but if you, e.g., depend on other directories or if you add
modules dynamically in your module, you need to specify these in the Deployment section. All tags that
are listed below can appear multiple times inside of the same Deployment section.

Deployment {
 directory = PATH
 ...
 file = FILE
 ...
 module = NAME
 ...
 DLL = NAME
 ...
 library = NAME
 ...
 objectWrapper = NAME
 ...
 widgetControl = NAME

Module (Abstract) Declaration

28

 ...
 preloadDLL = NAME
 ...
 scriptExtension = NAME
 ...
 remoteBaseHandler = NAME
 ...

 // section for files to be deployed on the web server (feature no available with public SDK)
 Web {
 directory = PATH
 ...
 file = FILE
 ...
 }
}

directory = PATH

defines an additional directory that this module depends on.

file = FILE

defines an additional file that this module depends on.

module = NAME

defines an additional module that this module depends on.

DLL = NAME

defines an additional DLL that this module depends on. The name is given without system-specific
pre-/postfix, so that the tag works cross platform. The DLL is copied to the bin folder of the
standalone application.

library = NAME

defines an additional library that this module depends on. The dependency analyser will look for a
NAME.mli file in all Packages inside the Configuration/Installers/Libraries directory. A typical use-
case is to add a complete ThirdParty library, including the license information and further files. Have
a look in MeVis/ThirdParty/Configuration/Installers/Libraries for example *.mli files.

objectWrapper = NAME

defines an additional ObjectWrapper that this module depends on. The will search for the given
wrapper and put its *.def file into the installer. For instance objectWrapper = CSOList will add the
wrapper for CSOList to the installer.

widgetControl = NAME

defines an additional WidgetControl that this module depends on. The will search for the
given WidgetControl and put its *.def file into the installer. For instance objectWrapper =

GLSLTextView will add the GLSLTextView control to the installer. Note that WidgetControls are
typically autodetected, but in DynamicFrame scenarios, it can make sense to use this tag anyways.

scriptExtension = NAME

defines an additional ScriptExtension that this module depends on. The will search for the given
extension and put its *.def file into the installer. For instance scriptExtension = DicomTools will
add the DicomTools script extension to the installer.

remoteBaseHandler = NAME

defines an additional RemoteBaseHandler that this module depends on. The will search for
the given handler and put its *.def file into the installer. For instance remoteBaseHandler =

AbstractItemModel will add the AbstractItemModel handler to the installer.

preloadDLL = NAME

defines an additional PreloadDLL that this module depends on. The will search for the given
PreloadDLL and put its *.def file into the installer. NOTE: This does not cause preloading of a
DLL directly, it merely searches for the PreloadDLL tag in the global MDL tree and adds the
corresponding *.def file to the installer.

Module (Abstract) Declaration

29

2.6. MLModule

Defines a module that contains an C++ image processing module that is derived from a Module in the
ML.

Typically used tags can be found at Module.

Dynamic scripting: MLABMLModule

MLModule NAME {
 class = NAME
 DLL = NAME
 projectSource = PATH

 // tags from Module
}

class = NAME (default: same as MLModule NAME)

sets the name of the C++ module that should be created via the ML runtime system.

Tip

This can be used to have the same internal C++ class for a number of MeVisLab
modules with different names and default values, or if you do not want the internal name
to appear as the MeVisLab module name.

DLL = NAME

specifies the dynamic load library where the C++ class for this module is defined in. The name is
given without system-specific pre-/postfix.

Example: DLL = MLBase

projectSource = PATH

specifies the path to the project sources. This optional tag is used to make, e.g., the project
file available in the module's context menu and the ModuleInspector. MeVisLab looks for the
CMakeLists.txt in the referenced directory to create/update the project file if needed.

This option should not be needed if a project is placed within a package that is known to MeVisLab.
If the project is located at some different place, however, use this option with either an absolute
or a relative path.

Example (relative): projectSource = $(LOCAL)/../../../../../Foo/Bar/MyProject

Example (absolute): projectSource = $(MLAB_MY_PACKAGE)/Sources/ML/MyProject

2.7. InventorModule

defines a module that contains a C++ visualization module derived from an OpenInventor SoNode or
SoEngine class.

Typically used tags can be found at Module.

Dynamic scripting: MLABInventorModule

InventorModule NAME {
 class = NAME
 DLL = NAME
 projectSource = PATH
 hasGroupInputs = BOOL [No]

Module (Abstract) Declaration

30

 hasViewer = BOOL [No]
 hybridMLModule = BOOL [No]

 // tags from Module
}

class = NAME (default: same as InventorModule NAME)

sets the name of the C++ module that should be created via the OpenInventor runtime system.

Tip

This can be used to have the same internal C++ class for a number of MeVisLab
modules with different names and default values, or if you do not want the internal name
to appear as the MeVisLab module name.

DLL = NAME

specifies the dynamic load library where the C++ class for this module is defined in. The name is
given without system-specific pre-/postfix.

Example: DLL = SoView2D

projectSource = PATH

see MLModule.

hasGroupInputs = BOOL (default: No)

sets whether the module is derived from a SoGroup and should have dynamic SoNode inputs.

hasViewer = BOOL (default: No)

sets whether the module should have a viewer (typically used on SoGroup derived nodes which
should have an Inventor Viewer).

hybridMLModule = BOOL (default: No)

sets whether the InventorModule contains a fully functional MLModule whose fields appear as if they
were the fields of the InventorModule. This is an advanced feature and should typically not be used.

2.8. MacroModule

defines a macro module which can contain an internal network. Typically a MacroModule has an
Interface section which defines the fields of the macro. The fields can be aliased from internal fields
or can be standalone fields.

Typically used tags can be found at Module.

MacroModules should use the externalDefinition tag to define their Interface and Windows in an
extra "ModuleName.script" file which should be named like the module itself.

If the externalDefinition tag is given, MeVisLab automatically loads the network with the same name
and the extension ".mlab". If the module only contains scripting and does not require an internal network,
use the scriptOnly tag to tell MeVisLab.

Dynamic scripting: MLABMacroModule

MacroModule NAME {
 scriptOnly = BOOL [No]
 onlyOneInstance = BOOL [No]

 // tags from Module
}

scriptOnly = BOOL (default: No)

sets wether an internal network is loaded/required.

Module (Abstract) Declaration

31

onlyOneInstance = BOOL (default: No)

sets whether only one instance of this module can be started as an application; additionally created
versions just show the already running application. This is used for applications that the user should
only be able to start once.

2.9. FieldListener

The FieldListener listens to fields and calls the script command given in the command tag whenever the
field changes.

The fields are given as the value tag and/or with multiple listenField tag.

There are two possible uses for a FieldListener:

1. They can be created in the Commands section of a Module.

2. They can be used anywhere in the control hierarchy of a Window.

1. If used in the Commands section, the FieldListener is active throughout the whole lifespan of
a module instance (from creation to deletion) and reacts to any field changes whether there is an
open module panel or not. Because of this, such a FieldListener cannot access the controls of the
user interface of the module with scripting, just the fields of the module.

2. If used somewhere inside of a Window, the FieldListener is an invisible user interface element
which is only active (and created) when the Window is actually created. Such a FieldListener
can access all other user interface controls within that Window that are named using the
ctx.control(name) Python function.

Note

Since part of a Window can be created multiple times using the Panel GUI control,
multiple instances of the same FieldListener in a Window can exist at the same time
and will all work and change the user interface via the ctx.control(name). The
limitation to this is that only controls can be accessed that are also cloned by the Panel
control, otherwise the ctx.control(name) function will return NULL. This means that
you should put your FieldListeners (which are in the user interface) close to the GUI
elements you are accessing so that they are also clone when a subpanel is extracted.

FieldListener [FIELD] {
 init = BOOL [No]
 callLater = BOOL [No]
 listenField = FIELD

 // ...

 command = SCRIPT
}

listenField = FIELD

listens to the given field.

This tag can be used multiple times to listen to N fields with the same FieldListener

command = SCRIPT (arguments: changedField)

defines the script command that is executed when one of the fields changes. The changed field is
passed as the first argument to the command.

init = BOOL (default: No)

sets whether the command is triggered once when the FieldListener is created. The first of the fields
it listens to is passed to the command.

Module (Abstract) Declaration

32

Tip

This is especially useful when the FieldListener updates some user interface control
and needs to be initiated initially to provide a correct user interface.

callLater = BOOL (default: No)

sets whether the field listener is scheduled the next time the event loop is processed and not
immediately when the field changes. You will only get one notification if multiple fields changed
since the last event loop processing. If more than one field is listened to, the command is called
without a field pointer, because the FieldListener does not know which of the fields have changed
since the last event loop.

Warning

Be careful, setting callLater to 'Yes' can cause infinite loops of field notifications! Only
use it when you know what you are doing!

2.10. NetworkPanel

This section allows to define a basic user interface on the body of the module in the network view.
Currently only an info string and a (icon) button are supported.

NetworkPanel {
 info = FIELDEXPRESSION

 Button [FIELD] {
 symbol = FIELDEXPRESSION
 color = FIELDEXPRESSION
 command = SCRIPT
 visibleOn = FIELDEXPRESSION
 dependsOn = FIELDEXPRESSION
 }
}

info = FIELDEXPRESSION

defines an expression that returns a string that will be displayed in the module body. See dependsOn
for a explanation of how expressions work. Note that there are some special functions that are
especially useful in this context:

A # in front of a field name returns a string with a value that is formatted for display. For enum
fields this is the current value's title instead of the raw value, for numeric fields the precision of the
value is restricted.

The replace function can be used to replace constants in a fixed string with field values.

Note that the resulting string should be short; longer strings might be truncated to avoid overly large
module bodies.

Button [FIELD]

defines a small icon button. A field can be given to get some default functionality: A trigger field will
display a reload icon which will touch the field if clicked. A bool field will display a check icon if it is
checked and will toggle the field's value if clicked. A color field will display an icon with the current
color and will raise a color select dialog if clicked.

The behavior of the button can be further customized with the following tags:

symbol = FIELDEXPRESSION

defines the symbol to display. There are some pre-defined symbols: recycle, start, stop, pause,
check, clear, and deny. It is also possible to give a full file name of an image file. This image
should be a white icon on transparent background to support the color tag.

Module (Abstract) Declaration

33

Note that this expects an expression, so if you just want to set a different symbol, you need
to write something like

symbol = "* "start" *"

color = FIELDEXPRESSION

defines the color for the symbol as an expression. The color can be a web color specification
like #FF0A80 (as string) or the value of a color field. Note that to set a static color, it must be
written like

color = "* "#FF0A80" *"

command = SCRIPT

defines the script command to execute if the button has been clicked. This overrides the default
behavior if a field has been specified.

dependsOn = FIELDEXPRESSION

defines the condition when the button should be clickable. This is useful to indicate some state
of the module.

visibleOn = FIELDEXPRESSION

defines the condition when the button should be visible. It might make sense to hide the button
if it is without function in some mode of the module.

34

Chapter 3. Other Module-Related MDL
Features

3.1. Module Genre Definition
A module in MeVisLab can be in part of multiple genres which are given with the genre tag. The available
genres are given in MeVisLab/Standard/Modules/IDE/Genre.def and can also be extended via user
genres.

Note

The names of the genres are defined by the value behind the Genre tag. These genre
names may not contain spaces or special characters and are used in the genre tag in the
modules' definition. If you want a more specific title, you can use the title tag of a Genre
to define the string visible to the user. string.

Extract of Genre.def:

GlobalGenres {
 Genre FileMain {
 title = File
 Genre = DICOM

 Genre InventorFile {
 title = Inventor
 }
 Genre File {
 title = Misc
 }
 }

 Separator = ""

 Genre ImageMain {
 title = Image
 Genre = Info
 Genre = Scale
 Genre = Generators

 Genre Image {
 title = Misc
 }
 }
 ...
}

Example of a module having two genres:

MLModule MyModule {
 genre = DICOM,Scale
}

If you are a MeVisLab core developer at MeVis, you can add genres in the Genre.def file.

If you are an external developer and you still need your own genres, you can add a UserGenres section
to your *.def file (on the top level):

UserGenres {
 Genre SomebodysGenreMain {
 title = "A longer title for the genre"
 Genre SomebodysGenre {
 }
 }
 Genre +Diffusion {
 Genre DiffExtra {
 }
 }
}

Other Module-
Related MDL Features

35

As you can see above there are two notations:

1. Adding a new root genre by just giving a Genre tag with the name of the new genre.

2. Extending a known genre with new entries by writing a + and an existing genre name (defined in
Genre.def).

Example: Genre +ImageMain { Genre = SomeNewSubGenre }

Note

UserGenres and GlobalGenres are only reloaded when MeVisLab is restarted or when the
whole database is reloaded.

3.2. ModuleGroup Definition
A module in MeVisLab can be given the membership of one or several ModuleGroups via the group
tag. A ModuleGroup consists of the group tag id and extra semantic information about this id given via
the ModuleGroup tag. The id has to be a single word and should start with your license prefix to avoid
mixing groups up. The existing groups can be enabled/disabled in the Preferences Panel of MeVisLab.

There are a number of predefined groups which are used throughout MeVisLab:

- deprecated = a modules that is officially gone, only still there to make old stuff work.

- test = a module that tests MeVisLab features.

- example = a module that shows things as an example.

- internal = internal MeVisLab modules which are not visible to the public.

To put your module into a defined group write the following:

MLModule SomeModule {
 group = MyOwnGroup
}

Now we need extra information on the ModuleGroup to make it appear nicely in the Preferences Panel
of MeVisLab.

ModuleGroup GROUPNAME {
 owner = STRING
 title = STRING
 comment = STRING
 type = [internal | std]
 shy = BOOL [No]
}

If you are a MeVisLab core developer at MeVis, you can add your ModuleGroups directly to MeVisLab/
Standard/Modules/IDE/ModuleGroups.def.

If you are an external developer, just put the additional ModuleGroups into any *.def file in you
UserModulePath, they are read automatically.

3.3. Preloading DLLs

Shared Libraries (DLLs) are loaded by MeVisLab when they are needed by a module in a network (see
the DLL tag of Section 2.6, “MLModule”). The PreloadDLL tag can be used to force MeVisLab to load
a given DLL on startup. This can be useful when your own ML Type Extensions should be loaded on
startup of MeVisLab.

The PreloadDLL tag can appear in any *.def file (on the top-level, not nested in other tags):

Other Module-
Related MDL Features

36

PreloadDLL DLLNAME {}
// or
PreloadDLL = DLLNAME

The DLLNAME is given without file extension. On Windows, ".dll" is appended in MeVisLab Release
and "_d.dll" in MeVisLab Debug application. Mac OS X uses "libDLLNAME.dylib" to access the shared
library. On Linux, "libDLLNAME.so" is used.

The same library may be specified multiple times, in this case it will still be loaded only once.

37

Chapter 4. GUI Controls
The following chapters give an overview of all possible GUI Controls and their tags. MeVisLab also
contains a number of example MacroModules that demonstrate the individual features.

4.1. GUI Example Modules in MeVisLab
The following modules demonstrate the use of the most of the GUI controls. (This list may not be
completely up-to-date, try searching for modules starting with Test* in the MeVisLab search.).

• TestStyles - how to change the controls appearance (Colors, Fonts, etc.).

• TestPrototypes - how to change tag defaults for given GUI controls.

• TestLayouter - showing the usage of AlignGroups.

• TestListView - showing a scripted ListView.

• TestModalDialog - how to create a modal dialog.

• TestHyperText - how to use RichText with hyper links.

• TestDefaultStyle - showing the default spacings etc.

• TestComboBox - showing a scripted ComboBox.

• TestViewers - showing different Inventor viewers.

• TestInventorChildren - showing how to add inventor nodes dynamically.

• TestDynamicFrames - how to change Frame content via scripting.

• TestTable, TestVertical, TestSplitterLayout, TestHorizontal

• TestFieldAccess - script access to field values, especially vectors, matrices and image properties.

• TestScriptUtils - showing the use of global script utility functions.

• TestTimers - how to create scripted timers.

Tip

As an all-in-one example module, the ExampleGUIScripting module should be studied
thoroughly.

4.2. Abstract GUI Controls
Abstract controls cannot be created directly in the MDL, but many concrete GUI controls are derived
from these controls to provide their basic behavior/tags.

4.2.1. Control (Abstract)

Control is the base class for all GUI controls and provides a number of tags supported by every control.
Some tags given here only make sense when used in the context of a layouter, e.g., colspan in Table
or x/y in Grid.

Dynamic scripting: MLABWidgetControl

name = NAME
panelName = STRING
expandX = ENUM [No]

GUI Controls

38

expandY = ENUM [No]
stretchX = INT [0]
stretchY = INT [0]
visible = BOOL [Yes]
enabled = BOOL [Yes]
dependsOn = FIELDEXPRESSION
visibleOn = FIELDEXPRESSION

style = NAME
styleSheetString = STRING
styleSheetFile = FILE
widgetName = NAME

// Tags that are only handled by the MeVisLab Web Toolkit
html_class = STRING
html_style = STRING
html_styleField = FIELD

// Width and height tags
w = INT
h = INT
pw = INT
ph = INT
mw = INT
mh = INT
maxw = INT
maxh = INT
fw = INT
fh = INT

// Control tags that are read by the owning layouter control:
x = INT
y = INT
x2 = INT
y2 = INT
scale = INT [1]
colspan = INT [1]
alignX = ENUM [Auto]
alignY = ENUM [Auto]

// layouter tags for inter control alignment:
alignGroupX = NAME (alias: alignGroup = NAME)
alignGroupY = NAME
childAlignGroupX = NAME (alias: childAlignGroup = NAME)
childAlignGroupY = NAME
labelAlignGroup = NAME

tooltip = STRING
tooltipField = FIELD
whatsThis = STRING
droppedFileCommand = SCRIPT
droppedFilesCommand = SCRIPT
droppedObjectCommand = SCRIPT
acceptDrops = BOOL
resizeCommand = SCRIPT
initCommand = SCRIPT
destroyedCommand = SCRIPT

bgMode = ENUM [Repeat]
editBgMode = ENUM
buttonBgMode = ENUM

screenshotCommentCommand = SCRIPT

name = NAME (alias: instanceName)

sets the name of the control. The control is registered under this name and can be accessed from
Python under this name. This is done by using the ctx.control("controlname") method.

style = NAME

defines the style to be used for this control (and for its children, if there are any).

see also DefineStyle

styleSheetString = STRING

see styleSheetFile, uses the given string instead of reading the CSS definition from a file

styleSheetFile = FILE

defines the Qt style sheet that should be used for this MDL control and all its children.

GUI Controls

39

Please note that this tag gives you direct access to the underlying Qt Style Sheets and that you
should not mix using style sheets and the MDL style tag in the same MDL controls, since the effects
that can happen are somewhat undefined. This results in the duality of QPalette/QFont (which are
used for the MDL style tags) and Qt Style Sheets which do not work well together (which is a known
Qt pitfall we can not do anything about).

The Qt Style Sheet feature offers complete styling of the MDL controls, but it requires some
knownledge of the underlying Qt widgets. For simple styling purposes, you should better use the
MDL style tag instead. For complete styling of the GUI (e.g., changing the look&feel of TabView,
ListView), the Qt Style Sheets provide possibilities far beyond what the MDL style tag offers.

See http://doc.qt.io/qt-5/stylesheet.html for full details.

Tip

The Widget Explorer is a useful tool for developing and debugging style sheets.

widgetName = NAME

sets the object name of the Qt widget that is managed by the control. This can be used in the ID
selector (#<object name>) of the Qt style sheets to apply style sheet rules.

html_class = STRING

sets the CSS class of the DOM element that is created for this control.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

html_style = STRING

sets the style attribute of the DOM element that is created for this control to this string.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

html_styleField = FIELD

sets the style attribute of the DOM element that is created for this control to value of the string field.

This only has an effect in the MeVisLab Web Toolkit, which is not part of the public SDK.

panelName = NAME

sets a name for this control that can be used by the Panel component to reference this control as
a cloned panel in some other GUI.

expandX = ENUM (default: No)

defines the space requirements of a control. It depends on the layouter (e.g., Vertical, Table) how
this requirement is met.

Possible values: Yes, No, True, False, 0, 1, Fixed, Minimum, Maximum, Preferred,
MinimumExpanding, Expanding, Ignored

Value Meaning

Fixed (aliases: 0, No,
False)

The control can never grow or shrink (e.g., the vertical direction of a
button).

Minimum The preferredWidth is minimal, and sufficient. The control can be
expanded, but there is no advantage to it being larger (e.g., the horizontal
direction of a button). It cannot be smaller than the preferredWidth.

Maximum The preferredWidth is a maximum. The control can be shrunk any amount
without detriment if other controls need the space (e.g., a separator line).
It cannot be larger than the preferredWidth.

Preferred The preferredWidth is best, but the control can be shrunk and still be
useful. The control can be expanded, but there is no advantage to it being
larger than preferredWidth (the default expandX value).

http://doc.qt.io/qt-5/stylesheet.html

GUI Controls

40

Value Meaning

Expanding (aliases: 1,
Yes, True)

The preferredWidth is a sensible size, but the control can be shrunk and
still be useful. The control can make use of extra space, so it should get
as much space as possible (e.g., the horizontal direction of a horizontal
slider).

MinimumExpanding The preferredWidth is minimal, and sufficient. The control can make use
of extra space, so it should get as much space as possible (e.g., the
horizontal direction of a horizontal slider).

Ignored The preferredWidth is ignored. The control will get as much space as
possible.

expandY = ENUM

defines the space requirements of a control. It depends on the layouter (e.g., Vertical, Table) how
this requirement is met.

Possible values: Yes, No, True, False, 0, 1, Fixed, Minimum, Maximum, Preferred,
MinimumExpanding, Expanding, Ignored

See expandX for an analogous explanation of the values.

stretchX = INT (default: 0)

defines the stretch factor in X direction.

stretchY = INT (default: 0)

defines the stretch factor in Y direction.

visible = BOOL (default: Yes)

sets whether the control is visible initially. It can be set to (in-)visible later by using the
setVisible(bool) method on the control.

enabled = BOOL (default: Yes)

sets whether the control is enabled. It can be changed by using setEnabled(bool) on the control.

dependsOn = FIELDEXPRESSION visibleOn = FIELDEXPRESSION

makes the control dependent on the given expression. If the expression changes its Boolean value,
the control is automatically enabled/disabled (for dependsOn) or shown/hidden (for visibleOn).

Examples:

// normal Boolean field dependency:
dependsOn = someBoolField

// negated normal Boolean field dependency:
dependsOn = !someBoolField

// enable only when enum field has given string value:
dependsOn = "* someEnumField == "SomeValue" *"

// enable only when enum field has given string value and the bool field is true:
dependsOn = "* someEnumField == "SomeValue" && someBoolField *"

// enable only when enum field contains one of the given values: (using a regexp)
dependsOn = "* someEnumField == /(SomeValue|SomeOtherValue)/ *"

// enable only when enum field is identical to one of the given values: (using a regexp)
dependsOn = "* someEnumField == /^(SomeValue|SomeOtherValue)$/ *"

// the above can also be written with a number of compares, note that due to the
// precendence, no parenthesis are needed:
dependsOn = "* someEnumField == "SomeValue" || someEnumField == "SomeOtherValue" *"

// numerical comparison:
dependsOn = " someNumberField < 12 "

// numerical comparison with function:
dependsOn = " abs(maxField-minField) >= 1 "

GUI Controls

41

Tip

When you use string constants inside the expression, it is easiest to quote the MDL
string with "* ... *" so that you do not have to escape the individual quotes of the string.

Tip

Besides standard operators known from C++ there are some predefined functions:

min(arg0, arg1, ...)

Returns the minimum of all given numeric arguments.

max(arg0, arg1, ...)

Returns the maximum of all given numeric arguments.

abs(arg)

Returns the absolute value of the numeric argument.

if(condition, argTrue, argFalse)

Returns argument argTrue if condition evaluates to true otherwise returns argFalse.

replace(arg0, arg1[, arg2])

Searches for all occurrences of arg1 in string arg0 and replaces it with arg2. arg1
may be a string or a regular expression. If no arg2 is given matches are simply
removed.

w = INT (alias: width) h = INT (alias: height)

sets the width/height in pixels (this implicitly sets the minimum and preferred size).

pw = INT (alias: preferredWidth) ph = INT (alias: preferredHeight)

sets the preferred width/height in pixels.

Tip

Not all controls currently support preferred width, some controls have their own default
sizes.

mw = INT (alias: minimumWidth) mh = INT (alias: minimumHeight)

sets the minimum width/height in pixels (a control cannot get any smaller than this size).

maxw = INT (alias: maximumWidth) maxh = INT (alias: maximumHeight)

sets the maximum width/height in pixels (a control cannot get any bigger).

fw = INT (alias: fixedWidth) fh = INT (alias: fixedHeight)

sets all above width/height sizes to the same value (the control will not change size in any layouter).

scale = INT (default: 1)

scales all sizes (margin/spacing/fonts) in fixed steps.

Positive integer values enlarge the control, negative values shrink it.

This is also applied to all child controls of a widget, so you can scale whole groups of controls with
one scale tag.

This feature works additive and recursive , so you can also resize in a hierarchy.

Tip

This feature replaces and extends the old ILAB4 styles defaultSmall, defaultBig, etc.,
which should no longer be used.

GUI Controls

42

alignGroupX = NAME (alias: alignGroup)childAlignGroupX = NAME (alias: childAlignGroup)

childAlignGroupY = NAMElabelAlignGroup = NAME

see Section 4.9.1, “Align Groups”for details on the usage of these tags

alignGroupY = NAME

specifies that this control is in a vertical aligngroup.

see Section 4.9.1, “Align Groups”for details on the usage

tooltip = STRING

sets a string used as tool tip. This can be changed by Python with the setToolTip(string) method.

Note that the first sentence of a help text of the mhelp document is used as the tool tip text when
no explicit tool tip is given here (and of course, if a mhelp files exists).

Instead of using the tooltip tag, rather write the field's help in the mhelp format. Avoid having multiple
places where the field's help has to be modified in case of a change.

Note

The automatic display of the field's help is deactivated by default if the panel is displayed
in an application context, since it is assumed that the help is written for developers
rather than for end users.

If you want to show the field help anyway, you can set the variable
"ShowFieldHelpInApplications" to "true", either in the preferences file of the application,
or with MLAB.setVariable() (must be set before a panel is created or shown). Also
note that mhelp files are excluded from application installers by default.

tooltipField = FIELD

provides the tool tip for the control, precedes the tooltip tag.

whatsThis = STRING

sets a string used as tool tip. This can be changed by Python with the setWhatsThis(string)
method.

Control tags that affect the control's layouters (depending on in which layouter the control is created,
e.g., Table, Grid):

alignX = ENUM (default: Auto)

specifies the alignment of the control, which automatically means that the control is not expanded
in that direction but aligned in its row/column.

This tag is used by the layouters a control is placed in, e.g., Table , Grid , Vertical and Horizontal.

Possible values: Auto, Left, Right, Center

alignY = ENUM (default: Auto)

specifies the alignment of the control, which automatically means that the control is not expanded
in that direction but aligned in its row/column.

This tag is used by the layouters a control is placed in, e.g., Table , Grid , Vertical and Horizontal.

Possible values: Auto, Top, Bottom, Center

x/y = INT

sets the column/row position of control in the Grid or sets the x/y position inside a FreeFloat layouter.

(Grid and FreeFloat layouters only, required tag!)

GUI Controls

43

x2/y2 = INT

sets a multicell column/row position for grid, the control spans the column from x to x2.

(Grid layouter only.)

colspan = INT (default: 1)

sets the column span used in Table layouter.

bgMode = ENUM (default: Repeat)

editBgMode = ENUM

buttonBgMode = ENUM

defines how background images in the style colors bg , editBg and button are drawn. The default is
repeating of the image which Qt grants us for free. All other modes have some kind of performance
or memory penalty, but can give nice background effects. Especially the "smooth" modes are
expensive.

Stretch, SmoothStretch

Stretches the image to the current size of this control.

StretchX, StretchY, SmoothStretchX, SmoothStretchY

Stretches the image in X/Y direction, repeat in the other direction. This can be used to have a
gradient effect with an image.

Fit, SmoothFit

Resizes the image so that it fits in the available space while keeping the aspect ratio. The border
is filled with the color given in the style.

TopLeft,TopRight,BottomLeft,BottomRight,Center

Image is positioned in corner/center of control and not resized.

Repeat

Image is repeated continuously (so the image used should match nicely with its borders).

ResizedBox (Advanced!)

Image is split in 9 parts which are stretched differently, *ModeBorderX + *ModeBorderY tags
select the corner box size that is not stretched.

Possible values: Repeat, Stretch, SmoothStretch, Fit, SmoothFit, TopLeft, TopRight, BottomLeft,
BottomRight, Center, ResizedBox

For specification of background images, see the Style section.

Advanced features:

droppedFileCommand = SCRIPT

defines a script that is executed when a file, directory or URL is dropped onto the control. If multiple
files were dropped then this is called multiple times

arguments: (string filename)

droppedFilesCommand = SCRIPT

defines a script that is executed when files, directories or URLS are dropped onto the control.

arguments: (list filenames)

droppedObjectCommand = SCRIPT

defines a script that is executed when an object is dropped onto the control.

arguments: (qobject object)

GUI Controls

44

acceptDrops = BOOL

sets whether the object accepts dropping of objects. If one of the above commands is set, this is
automatically set to 'Yes'.

Typically this is set to 'Yes' manually, if you want to handle drag-and-drop on a very low level, e.g.,
with an EventHandler.

resizeCommand = SCRIPT

defines a script that is executed whenever the control is resized on the screen. This can be used
to make other controls visible/invisible, depending on the available space. It can also be used to
do your own layouting in a FreeFloat by repositioning controls whenever the size of the FreeFloat
changes. See the EventFilter for other things that you can react on.

arguments: (none)

initCommand = SCRIPT

defines a script that is executed when the control was created (and before it is actually shown). The
control is passed with the call of the script.

arguments: (MLABWidgetControl)

destroyedCommand = SCRIPT

defines a script that is executed immediately before the control is destroyed. At this point the control
is already reduced to the basic control object, so you cannot use any feature provided by derived
controls! The control is passed with the call of the script.

arguments: (MLABWidgetControl)

Additional control tags for TabViewItems are given in TabViewItem, any control can be used as a
TabViewItem.

4.2.2. Frame (Abstract)

Frame is an abstract control which allows to set tags that control the frame appearance. A number of
controls are derived from this control.

Frame is derived from Control.

Dynamic scripting: MLABFrameControl

frameShape = ENUM [NoFrame]
frameShadow = ENUM [Plain]
frameLineWidth = INT [1]
frameMidLineWidth = INT [1]

frameShape = ENUM (default: NoFrame)

sets the shape of the frame, the possible values are:

NoFrame, Box, Panel, WinPanel, HLine, VLine, StyledPanel, PopupPanel, MenuBarPanel,
ToolBarPanel, LineEditPanel, TabWidgetPanel, GroupBoxPanel, MShape

frameShadow = ENUM (default: Plain)

sets the type of the frame's shadow, the possible values are:

Plain, Raised, Sunken, MShadow

frameLineWidth = INT (default: 1)

sets the line width of the frame.

frameMidLineWidth = INT (default: 1)

sets the mid line width.

GUI Controls

45

4.2.3. Execute

Execute can be used to execute a script function anywhere in a GUI definition. It can be placed in any
Control that supports children. It does not create a visible control but just executes the given scripting
function which may be defined via the source tag in the Commands section of the module. For Python,
it is also allowed to execute inline code that starts with "py:". The given function can also be a child of
an existing object written in dotted notation, e.g., "myObject.myFunction".

Execute = someFunction
Execute = "*py: MLAB.log("test") *"
Execute = "py: MLAB.log('test') "

The Execute statement has access to all controls that are "named" with the name tag and that appear
BEFORE the Execute statement. Controls following after the Execute statement cannot be reached. An
example for accessing a Control is given below.

Note

Generally it is not a good idea to use inline code, because it messes up your GUI interface.
It is not possible to define your own functions and classes in the inline code, so you should
prefer doing the scripting in external files given via source.

Label = "Test" { name = mylabel }
Execute = "*py: ctx.control("label").setTitle("Title Changed"); *"

4.3. Layout Group Controls
The following controls group other control together and define how these child controls are laid out.
Window is a special case, since it is the top level control and can only be declared on the top level of
a module definition.

4.3.1. Window

Window is the base control that contains any other controls. A module can have any number of Windows
in its MDL definition file. The first window (or the one with the name "_default") is used as the standard
parameter panel of the module.

Window is derived from Control.

Dynamic scripting: MLABWindowControl

Window NAME {
 title = STRING
 wakeupCommand = SCRIPT
 windowActivatedCommand = SCRIPT
 shouldCloseCommand = SCRIPT
 maximized = BOOL [No]
 canGoFullscreen = BOOL [No]
 fullscreen = BOOL [No]
 borderless = BOOL [No]

 ANYGUICONTROL { }
 ...
}

title = STRING

sets the title shown in the window title bar.

wakeupCommand = SCRIPT

defines a command that is called when the window is shown, you should better use an Execute
command, which is also called when your Window is extracted via a Panel control.

GUI Controls

46

windowActivatedCommand = SCRIPT

defines a command that is called when the window is activated (i.e. when it gets the keyboard focus).

shouldCloseCommand = SCRIPT

defines a command that is called when the window is closed by the user or by the program. If you
do not want the window to be closed, you can call

ctx.window().setCloseAllowed(false)

within the script command. The default is that the window can be closed.

maximized = BOOL (default: No)

sets whether the window will always be shown maximized on the screen.

canGoFullscreen = BOOL (default: No)

sets whether the window will have a fullscreen button in the upper right of its titlebar. This feature
is only supported on Mac OS X 10.7 or later, currently. Furthermore, it only works with application
main windows (i.e., use "Run As Application").

fullscreen = BOOL (default: No)

sets wether the window will always be shown fullscreen, with no window bar decoration and close
button.

borderless = BOOL (default: No)

sets wether the window will have no decoration at all, no close button, etc. Use with care because
you cannot close such a window without adding your own close button to it.

ANYGUICONTROL

Controls defined inside the window are the content of the window. If more than one control is
specified, the window automatically uses a TabView and the controls act as TabViewItems.

Example 4.1. Window

Have a look at the View3D.script (instantiate a View3D module in MeVisLab, right-click it and choose

Related Files → View3D.script from the context menu). There, you will find four Window sections
defined, namely 'View3D', 'Viewer', 'Settings' and 'LutEditor'. All these windows appear in the module's
context menu under 'Show Window' below the separator. Above the separator, the default window
(always called 'Panel') and the automatic panel are listed.

In the case of the View3D, no Window is named _default, so the first window ('View3D') is opened as
the default panel on double-clicking the module.

Interface {
 Inputs {
 // ...
 }
 Outputs {
 // ...
 }
 Parameters {
 // ...
 }
}

Description {
 // ...
}

Persistence {
 // ...
}

Commands {
 source = $(LOCAL)/View3D.py
 wakeupCommand = wakeup

 ContextMenu {
 MenuItem "Show Inventor Inputs" { field = inventorInputOn }

GUI Controls

47

 }
 FieldListener renderer.image {
 // ...
 }
 // ...
}

Window View3D {
 // ...
}

Window Viewer {
 Viewer viewer.self {
 name = viewer
 clone = No
 }
}

Window Settings {
 Panel {
 panel = Settings
 }
}

Window LutEditor {
 title = "Lut Editor"
 Vertical {
 Box Editor {
 Panel {
 module = SoLUTEditor
 panel = editor
 }
 }
 Box Settings {
 Field SoLUTEditor.relativeLut { }
 Field SoLUTEditor.alphaFactor { slider = Yes }
 Field SoLUTEditor.colorInterpolation { }
 }
 Box Range {
 Panel {
 module = SoLUTEditor
 panel = range
 }
 }
 }
}

4.3.2. Category

Category is an alias of the Vertical with the difference that the Category has a default non-zero margin.

It is recommended use the Category as the top level layouter instead of a Vertical, because otherwise,
inner controls might be clipped slightly by the window's border.

Figure 4.1. Category vs. Vertical

GUI Controls

48

In the image above, the left window uses a Category as the top level layouter while the right window
uses a Vertical instead. Note the clipping of the frames of the boxes by the window to the right.

4.3.3. Vertical

Vertical is a vertical layout group control. Each control inside of the Vertical is laid out according to its
size requirements.

The following children's tags are taken into account:

stretchY, expandY

Vertical is derived from Frame.

Aliases: VerticalNB, Category (see margin, though)

Dynamic scripting: MLABVBoxControl

Vertical {
 spacing = INT [0]
 margin = INT [0 for Vertical, nonzero default for Category]

 // Additional tags: see Frame

 ANYGUICONTROL { }
 ...
}

spacing = INT (default: 0)

spacing between the controls.

margin = INT (default: auto)

spacing between border and controls. The default is 0 pixels for Vertical, but a small non-zero value
for Category.

ANYGUICONTROL

all controls declared inside of the group are automatically children of the group.

Example 4.2. Vertical

Have a look at the module TestVerticalLayout. This module features some GUI components that are
arranged vertically.

Figure 4.2. TestVerticalLayout Module

4.3.4. Horizontal

GUI Controls

49

Horizontal is a horizontal layout group control. Each control inside of the Horizontal is laid out according
to its size requirements.

The following children's tags are taken into account:

stretchX, expandX

Horizontal is derived from Frame.

Aliases: HorizontalNB, ButtonGroup

Dynamic scripting: MLABHBoxControl

Horizontal {
 spacing = INT [0]
 margin = INT [0]

 // Additional tags: see Frame

 ANYGUICONTROL { }
 ...
}

spacing = INT (default: 0)

spacing between the controls

margin = INT (default: 0)

spacing between border and controls

ANYGUICONTROL

all controls declared inside of the group are automatically children of the group.

Example 4.3. Horizontal

Have a look at the module TestHorizontalLayout. This module features some GUI components that
are arranged horizontally.

Figure 4.3. TestHorizontalLayout Module

4.3.5. Table

Table organizes its children in rows. Child controls can span multiple columns and can be aligned within
their row/column position.

Each control inside of the Table is laid out according to its size requirements, the following children tags
are used by the layouter:

stretchX/Y, expandX/Y, alignX/Y, colspan

Table is derived from Frame.

GUI Controls

50

Dynamic scripting: MLABTableControl

Table {
 spacing = INT [0]
 margin = INT [0]

 // Additional tags: see Frame

 Row {
 visibleOn = FIELDEXPRESSION
 dependsOn = FIELDEXPRESSION
 ANYGUICONTROL { }
 ...
 }
 Row {
 visibleOn = FIELDEXPRESSION
 dependsOn = FIELDEXPRESSION
 ANYGUICONTROL { }
 ...
 }
 ...
}

spacing = INT (default: 0)

sets the spacing between the controls.

margin = INT (default: 0)

sets the spacing between border and controls.

Row

specifies a row in the table. The row can contain any number of child controls, which can also span
multiple column (with the colspan tag used in a control).

Each row may also contain a dependsOn and visibleOn expression, as described for normal
controls. Note that if dependsOn/visibleOn expressions are also specified for the children of the
row, unspecified behavior may occur.

GUI Controls

51

Example 4.4. Table

Have a look at the module TestTableLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = Yes

Window {
 title = "GUITest: Table"

 Table {
 margin = 5
 spacing = 3

 Row {
 Button {
 colspan = 3
 title = "TopLeft 3"
 expandX = Yes
 expandY = Yes
 }

 Button {
 colspan = 2
 title = "TopRight 2"
 expandX = Yes
 expandY = Yes
 }
 }

 Row {
 Button {
 colspan = 2
 title = "MidLeft 2"
 expandX = Yes
 expandY = No
 }

 Button {
 colspan = 1
 title = "MidCenter 1"
 expandX = No
 expandY = Yes
 }

 Button {
 colspan = 2
 title = "MidRight 2"
 expandX = Yes
 expandY = No
 }
 }

 Row {
 Button {
 colspan = 2
 title = "BottomLeft 2"
 expandX = Yes
 expandY = Yes
 }

 Button {
 colspan = 3
 title = "BottomRight 3"
 expandX = Yes
 expandY = Yes
 }
 }

 Row {
 Label "Resize this Window!" {
 colspan = 5
 alignX = Center
 }
 }
 } // wrap
}

GUI Controls

52

Figure 4.4. TestTableLayout Module

4.3.6. Grid

Grid organizes its children in rows and columns. Child controls can be positioned at any row/column
position and can span multiple columns and can be aligned within their row/column position.

Each control inside of the Grid is laid out according to its size requirements, the following children tags
are used by the layouter:

stretchX/Y, expandX/Y, alignX/Y, x, y, x2, y2

Grid is derived from Frame.

Dynamic scripting: MLABGridControl

Tip

Each child control needs to have a x/y position tag.

In contrast to Table, where controls are automatically ordered in rows, the Grid allows more
complex positioning.

Grid {
 spacing = INT [0]
 margin = INT [0]

 // Additional tags: see Frame

 // simple control:
 ANYGUICONTROL { x = INT y = INT }

 // multicolumn control:
 ANYGUICONTROL { x = INT y = INT x2 = INT y2 = INT }
 ...
}

spacing = INT (default: 0)

sets the spacing between the controls.

margin = INT (default: 0)

sets the spacing between border and controls.

ANYGUICONTROL

specifies a child control (which is positioned at the row and column given by the x and y tags in the
Grid), either as a row in the table, the row can contain any number of child controls, which can also
span multiple column (with the colspan tag used in a control).

GUI Controls

53

Example 4.5. Grid

Have a look at the module TestGridLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = yes

Window {
 title = "GUITest: Grid"

 Grid {
 margin = 5
 spacing = 3

 Button {
 x = 0
 y = 0
 x2 = 2
 Y2 = 0
 title = "<0,0>-<2,0>"
 expandX = Yes
 expandY = Yes
 }
 Button {
 x = 3
 y = 0
 x2 = 3
 y2 = 2
 title = "<3,0>-<3,2>"
 expandX = Yes
 expandY = Yes
 alignX = Right
 }
 Button {
 x = 0
 y = 1
 title = "<0,1>"
 expandX = Yes
 alignX = Left
 }
 Button {
 x = 1
 y = 1
 title = "<1,1>"
 expandY = Yes
 alignY = Top
 }
 Button {
 x = 2
 y = 1
 x2 = 2
 y2 = 2
 title = "<2,1>-<2,2>"
 expandX = Yes
 expandY = Yes
 }
 Button {
 x = 0
 y = 2
 x2 = 1
 y2 = 3
 title = "<0,2>-<1,3>"
 expandX = Yes
 expandY = Yes
 }
 Button {
 x = 2
 y = 3
 x2 = 3
 y2 = 3
 title = "<2,3>-<3,3>"
 expandX = Yes
 expandY = Yes
 alignY = Bottom
 }
 }
}

GUI Controls

54

Figure 4.5. TestGridLayout Module

4.3.7. ButtonBox

ButtonBox is a control that presents Button controls in a layout that is appropriate for the operating
system's look & feel. Dialogs typically present buttons in a layout that conforms to the interface
guidelines for that platform. A ButtonBox automatically uses the appropriate layout of the user's desktop
environment, and may change the order in which the child buttons appear.

Dynamic scripting: MLABButtonBoxControl

ButtonBox {
 orientation = ENUM [Horizontal]

 // Button control:
 Button { role = ENUM }
 ...
}

orientation = ENUM (default: Horizontal)

sets the the orientation of the button box.

Possible values: Horizontal, Vertical

Button

specifies a Button control. The role attribute of a Button is used to determine the role of the button
within a dialog window. See Button control for possible values.

If the button does not specify a role, the button title will be evaluated for know role strings. Currently
known strings are: Ok, Open, Save, Cancel, Close, Discard, Apply, Reset, Restore Defaults, Help,
Save All, Yes, Yes To All, No, No To All, Abort, Retry, Ignore

4.3.8. Splitter

Splitter organizes its children in vertical or horizontal direction and allows to resize the contained controls
with draggable handles. The color and shadow of the splitter are customizable.

Each control inside of the Splitter is laid out according to its size requirements. The following children
tags are used by the layouter:

stretchX/Y, expandX/Y

Splitter is derived from Frame.

Dynamic scripting: MLABSplitterControl

Splitter {
 direction = ENUM
 color = COLOR
 shadow = ENUM [Raised]
 childrenCollapsible = BOOL [Yes]

GUI Controls

55

 // Additional: tags for frame

 ANYGUICONTROL { }
 ...
}

direction = ENUM

defines layout direction of the Splitter.

Possible values: Vertical, Horizontal

color = COLOR

sets the the color which the splitter should have.

shadow = ENUM (default: Raised)

defines the the type of shadow of the splitter. Possible values are Plain, Raised and Sunken.

childrenCollapsible = BOOL (default: Yes)

defines if the child widgets can be collapsed completely by dragging the splitter.

GUI Controls

56

Example 4.6. Splitter

Have a look at the module TestSplitterLayout. Below you will find the MDL code that defines this
example macro module.

scriptOnly = Yes

Window {
 title = "GUITest: Splitter"
 w = 512
 h = 384

 Splitter {
 direction = Vertical

 Button {
 title = "1"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Horizontal

 Button {
 title = "2"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Vertical

 Button {
 title = "3"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Horizontal

 Button {
 title = "4"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Vertical

 Button {
 title = "5"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Horizontal

 Button {
 title = "6"
 expandX = Yes
 expandy = Yes
 }
 Splitter {
 direction = Vertical

 Button {
 title = "7"
 expandX = Yes
 expandy = Yes
 }
 }
 }
 }
 }
 }
 }
 }
}

GUI Controls

57

Figure 4.6. TestSplitterLayout Module

4.3.9. Box

Box shows a frame with a title around its children. It can contain any inner layout, which is selected by
the layout tag. If no layout is chosen, a Vertical is implicitly used. Note that all child tags of the Box are
also used by the selected layout, e.g., the margin tag.

Dynamic scripting: MLABBoxControl

Box STRING {
 title = STRING
 titleField = FIELD
 alignTitle = ENUM [Left]
 layout = NAME [Vertical]
 checked = BOOL [No]
 checkable = BOOL [No]
 checkedField = FIELD

 ANYGUICONTROL { }
 ...
}

title = STRING

overwrites the title given in Box tag.

titleField = FIELD

provides the title of the Box, precedes the title tag.

alignTitle = ENUM (default: Left)

sets the alignment of the title.

Possible values: Left, Center, Right

layout = NAME (default: Vertical)

defines a layouter.

Possible values: Category, Vertical, Horizontal, Table, Grid, Splitter, FreeFloat

checkedField = FIELD

checkedField can be a Boolean field. Its value is used to toggle the checked state which enables/
disables the content of the box.

GUI Controls

58

checkable = BOOL (default: No)

sets whether a checkbox appears in the title of the box which enables/disables the content of the
box.

checked = BOOL (default: No)

sets the checked state which indicates if the content of the box is enabled or disabled. This attribute
will be overwritten if checkedField is given.

Note: There is a known Qt bug that causes the box contents to overlap with the checkbox if the box
has no title

Example 4.7. Box

Have a look at the module TestBoxLayout. Below you will find the MDL code that defines this example
macro module.

scriptOnly = yes

Window {
 title = "GUITest: Box"

 Vertical {
 margin = 5

 Label "A Box with title and automatic layout:" {}
 Box BoxTitle {
 spacing = 5
 margin = 5
 Button { title = "A Button" }
 Button { title = "B Button" }
 Button { title = "C Button" }
 }

 Label "A Box without title and grid-layout:" {}
 Box {
 spacing = 2
 margin = 2
 layout = Grid

 Button { title = "A Button" x = 2 y = 0}
 Button { title = "B Button" x = 1 y = 1}
 Button { title = "C Button" x = 0 y = 2}
 }
 }
}

Figure 4.7. TestBoxLayout Module

4.3.10. ScrollView

ScrollView allows to scroll a bigger control with vertical and horizontal scrollbars. If not layout is specified,
the internal layout is a Vertical layout.

GUI Controls

59

ScrollView is derived from Frame.

Dynamic scripting: MLABScrollViewControl

ScrollView {
 layout = NAME [Vertical]
 hscroller = ENUM [Auto]
 vscroller = ENUM [Auto]

 // Additional: tags for frame

 ANYGUICONTROL { }
 ...
}

hscroller = ENUM (default: Auto)

sets whether the horizontal scrollbar is always on, off or should only appear when needed (auto).

Possible values: Auto, On, Off

vscroller = ENUM (default: Auto)

sets whether the vertical scrollbar is always on, off or should only appear when needed (auto).

Possible values: Auto, On, Off

layout = NAME (default: Vertical)

defines a layouter.

Possible values: Vertical, Horizontal, Table, Grid, Splitter, FreeFloat

Example 4.8. ScrollView

The following example adds another window to the View3D which then becomes available via the
module's context menu (Show Window). It adds the settings panel in a ScrollView with no horizontal
scroller but a vertical scroller if the panel's content exceeds the window (which it does).

Window ScrollViewTest {
 ScrollView {

 hscroller = Off
 vscroller = Auto

 Panel {
 panel = Settings
 }
 }
}

Figure 4.8. ScrollView Example

4.3.11. TabView

GUI Controls

60

TabView shows a TabBar and contains a stack of controls that are visible depending on the selected
Tab. It also offers a mode where the TabBar is not visible, allowing to change the selected Tab by
scripting only (this is often used in applications, which group their panels inside an invisible TabView).

The child controls of the TabView can be any controls. The additional tags needed for the TabView are
given as extra tags to the child controls. Refer to TabViewItem to see what tags are available.

The selected tab can be changed by using the selectTabAtIndex(int) or selectTab(controlname)
method on the TabView, or by associating the control with a field of type integer, whose value will be
the index of the currently displayed tab (see currentIndexField).

TabView is derived from Control.

Dynamic scripting: MLABTabViewControl

 TabView {
 currentIndexField = FIELD [None]
 mode = ENUM [Normal]
 acceptWheelEvents = BOOL [Yes]

 ANYGUICONTROL { }
 ...
}

currentIndexField = FIELD (default: None)

synchronizes the current tab index with the value of a field of type integer, i.e., the value of the field
changes when the tab is changed and vice versa.

mode = ENUM (default: Normal)

defines whether the TabBar is visible and if it is on the top or bottom of the widget. If the mode
is "toolbox", a ToolBox widget is used instead of a TabView; this has the advantage of internal
scrollbars and the possibility of long tab description. If the mode is "listview", a ListView widget is
shown on the left and shows each tab title as an entry in the list. If the ListView mode is enabled, the
tabHierarchy tag of each TabViewItem can be used to show a tree structure instead of a flag list.

Possible values: Normal, Top, Bottom, Left, Right, Invisible, Toolbox, ListView

acceptWheelEvents = BOOL (default: Yes)

sets whether the TabView should accept mouse wheel events to flip through its TabViewItems.

ANYGUICONTROL

each control in the TabView is treated as a TabViewItem and can contain the tags given in
TabViewItem

GUI Controls

61

Example 4.9. TabView

Have a look at the module TestTabViewLayout. This module features the use of an invisible TabView
where the tabs are changed by using scripting commands that are triggered by pressing a button, and
the use of standard tabs.

Note that each direct child of a TabView is turned into an own tab.

scriptOnly = yes

Commands {
 source = $(LOCAL)/TestTabViewLayout.py
}

Window {
 title = "GUITest: TabViews"

 Vertical "TabView with invisible Tabs" {
 Box Select {
 layout = Horizontal
 Button { title = "Boxes" command = switchTab0 }
 Button { title = "Table" command = switchTab1 }
 Button { title = "TextView" command = switchTab2 }
 }

 TabView {
 name = TabViewInvisible
 mode = Invisible

 Vertical {
 tabTitle = "Boxes"
 margin = 5

 Box BoxTitle { ... }

 Label "A Box without title and grid-layout:" {}

 Box BoxTitle { ... }

 }

 Table { ... }

 TextView {
 tabTitle = TextView
 title = TextViewExample
 text = "Example for a TextView-Control in a TabView"
 }
 }
 }

 TabView "TabView with visible Tabs" {
 Vertical "Boxes" {
 margin = 5

 Box BoxTitle { ... }

 Label "A Box without title and grid-layout:" {}

 Box BoxTitle { ... }

 }

 Table "Table" { ... }

 }
}

GUI Controls

62

Figure 4.9. TestTabViewLayout Module

4.3.11.1. TabViewItem

The TabViewItem can be used inside of a TabView to specify the TabView entries. Any other control
can also act as a TabViewItem in the TabView, just add the tags below to the control to pass the needed
information to the TabView.

The TabViewItem is a Vertical layouter and has the following tags:

Dynamic scripting: MLABVBoxControl

TabViewItem STRING {
 tabIcon = FILE
 tabTitle = STRING
 tabInitial = BOOL
 tabTooltip = STRING
 tabHierarchy = STRING

 tabSelectedCommand = SCRIPT
 tabDeselectedCommand = SCRIPT

 tabEnabled = BOOL [Yes]
 tabDependsOn = FIELDEXPRESSION

 ANYGUICONTROL { }
 ...
}

tabIcon = FILE

set an icon to show on the TabBar.

tabTitle = STRING

sets a title to use in the TabBar (overwrites the value of the TabViewItem tag).

GUI Controls

63

tabInitial = BOOL

selects a TabViewItem as the initially selected Tab (otherwise the first Tab is selected).

tabTooltip = STRING

sets a tool tip text on the TabBar.

tabHierarchy = STRING

defines the hierarchy name of the tab. This can be used in a TabView with mode = ListView to
support nested tabs. The separation character is '/'. For example, a value of 'Root/Settings' means
that the tab is a child of the TabViewItem with the tabHierarchy name 'Root'. The nesting is unlimited,
but the parent TabViewItems need to be declared before the child tab view items. All TabViewItems
are defined on the same MDL level/in the same TabView, the nesting is only available in the ListView
mode and does not influence the title of the tabs, only the nesting.

tabSelectedCommand = SCRIPT

defines a script command that is called when this TabViewItem is selected (also called on the initial
selection).

tabDeselectedCommand = SCRIPT

defines a script command that is called when this TabViewItem is deselected.

tabEnabled = BOOL (default: YES)

sets whether this tab is initially enabled.

tabDependsOn = FIELDEXPRESSION

sets whether this tab is enabled depending on the given field expression. Have a look at the example
of this tag for a more detailed explanation.

4.3.12. FreeFloat

FreeFloat organizes its children at a given integer position. The coordinate system starts with (0,0) in
the upper left corner.

Each control inside of the FreeFloat is positioned with the tags:

x/y

The size of the controls is taken from the width/height tags:

w/h

FreeFloat is derived from Frame.

Dynamic scripting: MLABFreeFloatControl

Tip

The FreeFloat should ONLY be used where no other layouter works, since it offers fixed
control positioning, which can have undesired effects when for example the font size
changes. It can be used nicely to have a title image and some floating buttons on the image.

FreeFloat {
 autoSize = BOOL

 // Additional: tags for frame

 ANYGUICONTROL { }
 ...
}

autoSize = BOOL (default: Yes)

sets whether the FreeFloat automatically calculates its preferred size as the bounding box of all
contained controls.

GUI Controls

64

4.4. User Input GUI Controls
User input control are typically tightly coupled with field in MeVisLab, thus allowing an easy way to
represent a module's parameter field with a desired user interface. If not stated, all controls are derived
from Control and offer its tags.

4.4.1. Field

Field is a very generic control that can show any of the fields in MeVisLab as an editable GUI element.
It typically shows a label with the field name (or a given title) followed by a number of user-editable
controls, e.g., LineEdit, NumberEdit, VectorEdit, ColorEdit, Slider.

It also allows to have field connections by using drag-and-drop of the title label and a pop-up menu to
work on the underlying field. Whether drag-and-drop is turned on depends on the window the control is
used in. If it is an application window, drag-and-drop is automatically disabled.

Dynamic scripting: MLABFieldControl

Field FIELD {
 title = STRING
 titleField = FIELD
 edit = BOOL [Yes]
 validator = REGEXP
 slider = BOOL [No]
 pressedIndicatorField = FIELD
 editField = BOOL [Yes]
 format = STRING
 minLength = INT [5]
 hintText = STRING
 trim = ENUM [None]
 sunkenVectorLabels = BOOL [Yes]
 componentTitles = STRING
 editAlign = ENUM [Left]
 textAlign = ENUM [Left]
 step = FLOAT
 stepstep = FLOAT
 sliderSnap = FLOAT
 spacing = INT [0]
 alignGroup = STRING
 enumAutoFormat = BOOL [Yes]
 acceptWheelEvents = BOOl [Yes]

 comboBox = BOOL [No]
 comboEditable = BOOL [Yes]
 comboCompletes = BOOL [Yes]
 caseSensitiveAutoComplete = BOOL [Yes]
 comboSeparator = STRING [,]
 comboField = FIELD

 comboItems {
 item {
 image = FILE
 title = STRING
 }
 ...
 }
 applyButton = BOOL [No]
 moreButton = BOOL [No]
 browseButton = BOOL [No]
 fileDialogCreatesUnexpandedFilenames = BOOL [No]
 browseMode = ENUM [Open]
 browseTitle = STRING
 browseFilter = STRING
 browsingGroup = STRING
 browseSelectedCommand = SCRIPT
 useSheet = BOOL [Yes]
 fieldDragging = BOOL
 updateFieldWhileEditing = BOOL [No]
}

title = STRING

title shown on field label.

GUI Controls

65

titleField = FIELD

sets the title as a field; it is automatically updated when the field changes and shows the field's
string value.

step = FLOAT

sets a step value used for NumberEdits.

stepstep = FLOAT

sets a stepstep value used for NumberEdits. The stepstep value is usually smaller than the step
value.

sliderSnap = FLOAT

set a snap value for the slider. If set to a value != 0, the slider always snaps to a value that is a
multiple of this value starting at the sliders minimum.

edit = BOOL (default: Yes)

sets whether the fields value can be edited. If set to 'No', typically text labels are used instead of
editable GUI elements.

(This is different from the general Control tag enabled, which enables or disables a whole control
(also called "grayed out").)

validator = REGEXP

Sets a regular expression to check if the input is valid when the value is editable and not a number.
A description of the expression syntax can be found here: http://doc.qt.io/qt-5/qregexp.html

slider = BOOL (default: No)

sets whether a slider is shown. This only works if the field is a number field and has min and max
values.

pressedIndicatorField = FIELD

specifies a Boolean field that is set to true if the user presses the slider button and to false if the
user releases the slider button.

editField = BOOL (default: Yes)

sets whether the GUI element is editable, typically is used to enable the slider without the
NumberEdit to the left.

format = STRING

sets a format string to be used as in sprintf, e.g., %4.5f or %x

Note

You have to use the right %d,%x ,%f,%g type for float/double/int fields.

minLength = INT (default: 5)

sets a minimum width of characters reserved in the editable GUI element.

hintText = STRING

sets a hint text shown in editable line edit if line edit is empty and does not have the focus.

updateFieldWhileEditing = BOOL (default: No)

sets whether the attached field is updated while the user types text in the line edit.

trim = ENUM (default: None)

does trimming on the string when it is not edited.

Possible values: Left, Center, Right, None

Left: "...LongText"

Center: "Long...Text"

http://doc.qt.io/qt-5/qregexp.html

GUI Controls

66

Right : "LongText..."

None: No trimming

sunkenVectorLabels = BOOL (default: Yes)

sets whether labels are drawn into the same frame as the LineEdit, otherwise they are drawn
separately.

componentTitles = STRING

specify titles for the separate component edit boxes of a vector value, overriding the default values.
Values must be comma-separated. Extra values will be ignored, if too few values are specified the
remaining labels will be unchanged. If this is used on a non-vector field an error is printed.

editAlign = ENUM (default: Left)

defines the alignment of the text in the Line/NumberEdits. Default depends on whether numbers
or strings are edited.

Possible values: Left, Right, Center

textAlign = ENUM (default: Left)

defines the alignment of the text in the title label.

Possible values: Left, Right, Center

alignGroup = STRING

sets a hint to which other Fields this Field should be aligned. If the Control should never be aligned,
use "None". This is a general feature and is explained in detail in Section 4.9.1, “Align Groups”

enumAutoFormat = BOOL (default: Yes)

sets whether enum fields should avoid automatic formatting of enumeration names. Automatic
formatting means that a field called "MyName" receives the automatic title "My Name". If the enum
items have a common prefix, this is also stripped when automatic formatting is active.

acceptWheelEvents = BOOL (default: Yes)

sets whether a combobox or a number field (integer, float, or double) should accept mouse wheel
events to adjust its value.

comboBox = BOOL (default: No)

sets whether a comboBox is used instead of LineEdit.

comboEditable = BOOL (default: Yes)

sets whether the comboxbox string is editable.

comboCompletes = BOOL (default: Yes)

sets whether auto complete is used when editable.

caseSensitiveAutoComplete = BOOL (default: Yes)

sets whether the combobox auto completion is case sensitive.

comboField = FIELD

specifies a field whose string value is used instead of given comboItems. When the comboField
changes, the available combo list is updated. Note that the field respresenting the selected value is
not changed, even if the current value is not in the new combo list.

comboSeparator = STRING (default: ",")

sets a string value to use for splitting the string value of comboField into individual values.

comboItems

specifies the items shown in the ComboBox, may be omitted if comboField is given.

Each item is specified with the item tag.

Each item entry can contain the following tags:

GUI Controls

67

image = FILE

image to be used for the item

title = STRING

title to be used for the item

applyButton = BOOL

sets whether an apply button is generated for VectorEdit. Typically only Rotation has an Apply
Button automatically, otherwise it is off by default.

moreButton = BOOL (default: No)

sets whether an additional "..." button is generated that opens a multi-line text edit to edit the field's
string value.

browseButton = BOOL (default: No)

sets whether an additional browse button is generated that opens a file dialog at current field value
(path).

fileDialogCreatesUnexpandedFilenames = BOOL (default: No)

the file dialog that is shown via the browse button generates absoulte path names, if
fileDialogCreatesUnexpandedFilenames is set to No. Otherwise it replaces the beginning of the
filename with a variable like $(LOCAL), $(DemoDataPath), if possible.

See also MLABModule::unexpandFilename()

browseMode = ENUM (default: Open)

specifies the type of the file dialog.

Possible values: Open, Save, Directory, OpenReadOnly, DirectoryReadOnly

The ReadOnly variants of these values open a browse dialog that doesn't allow changes to the file
system. This might use a non-system browse dialog.

browseTitle = STRING

sets the title of the button for the file dialog

browseFilter = STRING

specifies the file extension filter that is used in open and save mode. You can specify the file types
as follows:

browseFilter = "All C++ files (*.cpp *.cc *.C *.cxx *.c++);;Text files (*.txt);;All

files (*)"

Filters are separated by double-semicolon. The filter is a space-separated list of glob-style
expressions enclosed in braces that follow the textual description of the filter.

browsingGroup = STRING

MeVisLab file dialogs store the last used directory, so they can open at the last used location.

If you have applications that load/save data at different locations you can put the dialogs into different
browsing groups that store the last used direction separately. Just use different group names (only
use letters and numbers in the names).

browseSelectedCommand = SCRIPT

defines the script command to be evaluated when the user made a selection with the file dialog.

useSheet = BOOL (default: Yes)

sets whether any attached dialog (e.g., file dialog) is created as a sheet on Mac OS X. A sheet is
a modal dialog attached to a particular document or window.

spacing = INT (default: 0)

sets the internal spacing between the GUI elements of a FieldControl.

GUI Controls

68

wrap = BOOL

sets whether step and stepstep wrap the value around when reaching the boundaries.

fieldDragging = BOOL

sets whether the dragging of the fields label onto other field label is possible to create connections.
The default is 'Yes' for normal panels and 'No' for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

// Different layouts can be used with certain types of fields:
//
// MLABStringField:
// ----------------
// FieldLabel | <- LineEdit -> | [Browse/Save Button]
//
// If "edit" is 'No', LineEdit is just a Label
//
// MLABBoolField:
// ----------------
// FieldLabel | CheckBox
// (CheckBox is without label on right)
//
// MLABInt/Float/DoubleField:
// --------------------------
// FieldLabel | NumberEdit | [<- Slider if min/max is set and "slider" tag is 'Yes' ->]
//
// If "edit" is 'No', NumberEdit is just a Label
//
// MLABEnumField:
// --------------
// FieldLabel | ComboBox
//
// MLABTriggerField:
// --------------
// FieldLabel | Button
//
// MLABColorField:
// --------------
// FieldLabel | ColorEdit
//
// MLABVec2f/3f/4f/Plane/RotationField:
// --
// FieldLabel | x | NumberEdit | y | NumberEdit | z | NumberEdit | d | NumberEdit | [Apply Button]
//
// Naming for labels:
// MLABVec2f: x,y
// MLABVec3f: x,y,z
// MLABVec4f: x,y,z,t
// MLABRotation: x,y,z,r
// MLABPlane: x,y,z,d
//
// If "edit" is 'No', NumberEdits are just Labels

4.4.2. FieldLabel

FieldLabel shows the draggable label that is used in the Field control. It may be used if one wants to
allow a drag/drop connection, e.g., of a matrix, and does not want to show the value of the field.

FieldLabel FIELD {
 title = STRING
 titleField = FIELD
}

title = STRING

sets the title shown on field label.

titleField = FIELD

sets the title given by a field. It is automatically updated when the field changes and shows the
field's string value.

4.4.3. Button

GUI Controls

69

Button shows a clickable button that can either trigger a MLABTriggerField or MLABBoolField or that
can call a script given as command tag. The button can have multiple images for the different states and
it can be a normal or a toggle button.

Dynamic scripting: MLABButtonControl

Tip

You can use & in the button title to add an ALT keyboard shortcut binding to a button. The
respective letter will be underlined (e.g., "&Ok").

Button [FIELD] {
 title = STRING
 titleField = FIELD
 role = ENUM [ApplyRole]
 image = FILE
 accel = KEYSEQUENCE
 border = BOOL [Yes]
 autoRepeat = BOOL [No]
 normalOnImage = FILE
 normalOffImage = FILE
 activeOnImage = FILE
 activeOffImage = FILE
 disabledOnImage = FILE
 disabledOffImage = FILE
 globalStop = BOOL [No]
 fieldDragging = BOOL

 popupMenu {
 // See definition of SubMenu
 }

 command = SCRIPT
}

title = STRING

sets the title on the button.

titleField = FIELD

sets the title as a field. The title string is automatically updated when the field changes and shows
the field's string value.

role = ENUM (default: ApplyRole)

defines the role of the button in the window/dialog. It is evaluated if the button has been placed
within a ButtonBox container.

Possible values are:

AcceptRole

Clicking the button causes the dialog to be accepted (e.g., OK).

RejectRole

Clicking the button causes the dialog to be rejected (e.g., Cancel).

DestructiveRole

Clicking the button causes a destructive change (e.g., for Discarding Changes) and closes the
dialog.

ActionRole

Clicking the button causes changes to the elements within the dialog.

HelpRole

The button can be clicked to request help.

YesRole

The button is a "Yes"-like button.

GUI Controls

70

NoRole

The button is a "No"-like button.

ApplyRole

The button applies current changes.

ResetRole

The button resets the dialog's fields to default values.

image = FILE

specifies a pixmap to use on the button.

accel = KEYSEQUENCE

sets a CTRL or ALT key sequence that activates this button. For normal ALT keyboard shortcuts,
use the & notation in the title string.

Example:

accel = Ctrl+U

border = BOOL (default: Yes)

sets whether the buttons have a border.

autoRepeat = BOOL (Default: No)

sets whether the button sends repeated clicked signal when user holds button.

normalOnImage = FILE

normalOffImage = FILE

activeOnImage = FILE

activeOffImage = FILE

disabledOnImage = FILE

disabledOffImage = FILE

specifies a different images for all states of the button.

popupMenu

defines a pop-up menu to show on button press.

globalStop = BOOL (default: No)

sets whether this button can be used as a global stop button, so that current ML calculations can
be stopped by clicking this button.

To check buttons for a stop request in the scripting, you have to call MLAB.shouldStop() regularly
in you scripting loop. This returns true if a stop button was pressed.

command = SCRIPT

defines a script command that is executed when the button is pressed/toggled.

fieldDragging = BOOL

sets whether the dragging of the button onto other buttons is possible to create field connections.
The default is 'Yes' for normal panels and 'No' for standalone applications. This enables the field
context menu on the button.

4.4.4. ToolButton

ToolButton is a quick access button which is typically used in ToolBars. It can have an additional pop-up
menu that pops up after a given delay. It has mainly the features from Button, but additionally supports

GUI Controls

71

autoRaise, which lets the border be highlighted when the mouse moves over it. The title is typically not
shown. It can either trigger a MLABTriggerField or MLABBoolField or can call a script given as command
tag. The button can have multiple images for the different states and it can be a normal or a toggle button.

Dynamic scripting: MLABToolButtonControl

ToolButton [FIELD] {
 image = FILE
 title = STRING
 titleField = FIELD
 textPosition = ENUM [Bottom]
 autoRepeat = BOOL [No]
 autoRaise = BOOL [No]
 autoScale = BOOL [No]
 accel = KEYSEQUENCE
 scaleIconSetToMinSize = BOOL [No]
 normalOnImage = FILE
 normalOffImage = FILE
 activeOnImage = FILE
 activeOffImage = FILE
 disabledOnImage = FILE
 disabledOffImage = FILE
 globalStop = BOOL [No]
 inlineDrawing = BOOL [No]

 popupMenu {
 // See definition of SubMenu
 }
 popupDelay = FLOAT (deprecated)
 popupMode = [Instant|Delayed|MenuButton]

 command = SCRIPT
}

title = STRING

sets a title string on the button (typically not shown).

titleField = FIELD

specifies a field that provides the text for the button (text is updated when field changes).

image = FILE

specifies a pixmap to use on the button.

textPosition = ENUM (default: Bottom)

sets the position of the title relative to the image.

Values: Right, Bottom

accel = KEYSEQUENCE

sets a CTRL or ALT key sequence that activates this button. For normal ALT keyboard shortcuts,
use the & notation in the title string.

Example:

accel = Ctrl+U

autoRepeat = BOOL (default: No)

sets whether the button sends repeated clicked signal when user holds button.

autoRaise = BOOL (default: No)

sets whether the border is shown only on mouse over.

autoScale = BOOL (default: No)

scales the images to the MeVisLab global default tool button size.

scaleIconSetToMinSize = BOOL (default: No)

if autoScale is set to 'Yes' and this tag is also set to 'Yes', the Images from the following six
ImageTags are not scaled to the default tool button size but to the minimum size of the tool button
as set by the tags mw and mh:

GUI Controls

72

normalOnImage = FILE

normalOffImage = FILE

activeOnImage = FILE

activeOffImage = FILE

disabledOnImage = FILE

disabledOffImage = FILE

specifies different images for all states of the button.

popupMenu

defines a pop-up menu to show on button press.

popupDelay = FLOAT (deprecated)

Sets the delay to show the popup. This is deprecated, use popupMode instead.

popupMode = [Instant,Delayed,MenuButton]

Sets the mode of the popup. If set to Instant, the popup shows when the button is pressed. If set
to Delayed, the popup shows if the button is pressed for a system dependend time span. If set the
MenuButton, an extra menu button is rendered next to the normal ToolButton.

globalStop = BOOL (default: No)

defines whether this button can be used as a global stop button, so that current ML calculations
can be stopped by clicking this button.

To check buttons for a stop request in the scripting, you have to call MLAB.shouldStop()regularly
in you scripting loop. This returns true if a stop button was pressed.

inlineDrawing = BOOL (default: No)

enables inline drawing, which disables drawing of the button frame and the sunken state.

This is useful when used as an inline widget of a LineEdit.

command = SCRIPT

defines a script command that is executed when the button is pressed/toggled.

4.4.5. CommonButtonGroup

CommonButtonGroup cannot be used directly. It implements the common functionality for button
groups, which are PushButtonGroup, RadioButtonGroup and ToolButtonGroup.

Button groups are GUI elements to group buttons together, because they share a common purpose. An
example would be a panel where the user has to select one or more filters to be applied to an image.
The buttons would be checkable and not exclusive. The button group can be synchronized with an enum
field, integer field, and it can be used without any field.

CommonButtonGroup [FIELD] {
 border = BOOL [No]
 buttonClickedCommand = SCRIPT
 buttonPressedCommand = SCRIPT
 buttonReleasedCommand = SCRIPT
 equalButtonWidths = BOOL [No]
 equalButtonHeights = BOOL [No]
 exclusiveButtons = BOOL [No, with fields Yes]
 margin = UINT [2]
 orientation = ENUM [Horizontal]
 showButtonNames = BOOL [No]
 showIconsOnly = BOOL [No]
 spacing = UINT [4]
 stripEnumItemPrefix = BOOL [Yes]

GUI Controls

73

 strips = UINT [1]
 title = TRANSLATEDSTRING

 items {
 item [NAME|VALUE] {
 command = SCRIPT

 enabled = BOOL
 visible = BOOL

 dependsOn = FIELDEXPRESSION
 visibleOn = FIELDEXPRESSION

 image = IMAGEFILE
 shortcut = TRANSLATEDKEYSEQUENCE
 title = TRANSLATEDSTRING
 tooltip = TRANSLATEDSTRING
 whatsThis = TRANSLATEDSTRING

 activeOnImage = IMAGEFILE
 activeOffImage = IMAGEFILE
 disabledOnImage = IMAGEFILE
 disabledOffImage = IMAGEFILE
 normalOnImage = IMAGEFILE
 normalOffImage = IMAGEFILE
 }
 // ... more items may follow ...
 }
}

border = BOOL (default: No)

sets whether a rectangular border is drawn around the buttons.

Note

A border is required if a title is given. Setting border to No and specifying a title will
result in an error message and border will be set to Yes.

buttonClickedCommand = SCRIPT

defines a script command that is called when any button has been clicked. The button name is
passed as argument.

buttonPressedCommand = SCRIPT

defines a script command that is called when any button has been pressed. The button name is
passed as argument.

buttonReleasedCommand = SCRIPT

defines a script command that is called when any button has been released. The button name is
passed as argument.

equalButtonWidths = BOOL (default: No)

if set to Yes, then the widths of all buttons in the group are resized to match the widest button.

equalButtonHeights = BOOL (default: No)

if set to Yes, then the heights of all buttons in the group are resized to match the highest button.

exclusiveButtons = BOOL (default: No, with field: Yes)

sets whether only the last clicked buttons is checked and all others are released. This is only
supported if buttons are checkable.

Note

If an enum field or integer field is used, then this is always Yes, because the field can
have only one state.

margin = UINT (default: 2)

sets the margin of the button group widget. It is applied to all four sides: top, left, bottom, right.

GUI Controls

74

orientation = ENUM (default: Horizontal)

specifies if the buttons are vertically or horizontally laid out.

showButtonNames = BOOL (default: No)

sets whether the button name is appended to the title.

showIconsOnly = BOOL (default: No)

sets whether the button name and title are not displayed.

spacing = UINT (default: 4)

sets the amount of space between the buttons.

stripEnumItemPrefix = BOOL (default: Yes)

sets whether title prefixes are removed. For example, if the enum titles are "AutoUpdate" and
"AutoLoad", the titles will be "Update" and "Load". "Auto_Update" and "Auto_Load" will also be
"Update" and "Load". This is only evaluated if the button group is assigned to an enum field.

strips = UINT (default: 1)

specifies how many buttons are added to a row if the orientation is horizontal, or to a column if the
orientation is vertical.

title = STRING

specifies the title of the button group. If it is not empty, border must be set to Yes, since it this
required. Otherwise a warning is printed.

items

specifies the items of an enumeration. Their values must correspond to a field value, or, if no field is
given, it can be freely choosen. The value will be the button name and is used to access the buttons
through the scripting API (see Button Access Slots in MLABCommonButtonGroupControl).

command = SCRIPT

defines a script command that is called when the button has been clicked.

enabled, visible = BOOL

sets whether the button is initially enabled/visible.

dependsOn, visibleOn = FIELDEXPRESSION

determines whether the button is disabled/hidden, otherwise enabled/visible. See dependsOn/
visibleOn of the generic Control for a more detailed explanation of the expression.

image = IMAGE

sepcifies an image file to add an icon to the button.

title = STRING

specifies the text of the button.

tooltip = STRING

sets a text that pops up if the button receives a tooltip event. For example, this happens when
the mouse cursor stays over the button.

whatsThis = STRING

sets an additional help text.

activeOnImage, activeOffImage, disabledOnImage, disabledOffImage, normalOnImage,

normalOffImage = IMAGEFILE

specifies image files that are displayed as the icon of the button, depending on its modes and
states.

The button is active when the user is interacting with the button, for example, moving the mouse
over it or clicking it.

GUI Controls

75

disabled means that the functionality of the button is not available.

normal is the default mode. The user is not interacting with the button, but the functionality is
available.

The on and off states correspond to the ckecked state of the button.

Dynamic scripting: MLABCommonButtonGroupControl

4.4.6. PushButtonGroup

PushButtonGroup is derived from CommonButtonGroup.

PushButtonGroup supports these additional tags:

PushButtonGroup [FIELD] {
 autoScaleIcons = BOOL [No]
 checkableButtons = BOOL [No, with field Yes]
 flatButtons = BOOL [No]
 iconWidth = INTEGER
 iconHeight = INTEGER
 useOriginalIconSizes = BOOL [No]

 // .. more tags of CommonButtonGroup ...
}

autoScaleIcons = BOOL (default: No)

sets whether the icons are scaled to the default icon size of MeVisLab.

checkableButtons = BOOL (default: No, with field: Yes)

sets whether the buttons are checkable and are automatically raised after clicking on them.

Note

If an enum field or integer field is used, then this is always Yes, because the field has
a state.

flatButtons = BOOL (default: No)

sets whether the border of the button is not raised.

iconWidth = INTEGER

sets the maximum width of the button icons. Requires that iconHeight is also set.

iconHeight = INTEGER

sets the maximum height of the button icons. Requires that iconWidth is also set.

useOriginalIconSizes = BOOL (default: No)

sets whether the original image size is used as icon size.

Dynamic scripting: MLABPushButtonGroupControl

4.4.7. RadioButtonGroup

RadioButtonGroup is derived from CommonButtonGroup.

Note

The radio buttons are always checkable and the default value for exclusiveButtons is Yes.

GUI Controls

76

RadioButtonGroup [FIELD] {
 // .. tags of CommonButtonGroup ...
}

Dynamic scripting: MLABRadioButtonGroupControl

4.4.8. ToolButtonGroup

ToolButtonGroup is derived from CommonButtonGroup.

ToolButtonGroup supports these additional tags:

ToolButtonGroup [FIELD] {
 autoScaleIcons = BOOL [No]
 autoRaiseButtons = BOOL [Yes]
 checkableButtons = BOOL [No, with field Yes]
 iconWidth = INTEGER
 iconHeight = INTEGER
 useOriginalIconSizes = BOOL [No]

 // .. more tags of CommonButtonGroup ...
}

autoScaleIcons = BOOL (default: No)

see autoScaleIcons of PushButtonGroup.

autoRaiseButtons = BOOL (default: Yes)

sets whether tool buttons are automatically raised.

checkableButtons = BOOL (default: No, with field: Yes)

see checkableButtons of PushButtonGroup.

iconWidth = INTEGER

sets the maximum width of the button icons. Requires that iconHeight is also set.

iconHeight = INTEGER

sets the maximum height of the button icons. Requires that iconWidth is also set.

useOriginalIconSizes = BOOL (default: No)

sets whether the original image size is used as icon size.

Dynamic scripting: MLABToolButtonGroupControl

4.4.9. ButtonBar

Note

This control is deprecated. Use PushButtonGroup, RadioButtonGroup, ToolButtonGroup or
ComboBox instead.

ButtonBar is a control that has different appearances for a given number of entries being read from an
enum field or integer field. It can be vertically or horizontally laid out. It is synchronized with the field
bidirectionally.

Available modes are:

• a group of Buttons with icons and/or titles

• a group of RadioButtons with icons and/or titles

GUI Controls

77

• a ComboBox that shows a pop-up bar showing the possible options as items. Items are given as list
of items in the items tag group. Each item either gives an enum string value or an integer number. If
no items are given for an enum field, all enums are automatically shown with their titles.

Dynamic scripting: MLABButtonBarControl

Tip

If you use the radio value for the show mode, you can generate nice one-of-many radio
groups.

ButtonBar FIELD {
 title = STRING
 show = ENUM [All]
 enumAutoFormat = BOOL [Yes]
 direction = ENUM [Horizontal]
 border = BOOL [Yes]
 showItemInternals = BOOL [No]

 strips = INT [1]
 autoScale = BOOL [No]

 items {
 item [NAME|VALUE] {
 image = FILE
 title = STRING
 tooltip = STRING
 whatsThis = STRING
 accel = KEYSEQUENCE
 normalOnImage = FILE
 normalOffImage = FILE
 activeOnImage = FILE
 activeOffImage = FILE
 disabledOnImage = FILE
 disabledOffImage = FILE
 }
 ...
 }
}

show = ENUM (default: All)

how the ButtonBar should show its items.

Possible values: One, All, Radio, Toolbuttons

"one" shows the pop-up menu, "all" shows all entries as buttons, "radio" shows radio buttons and
"toolbuttons" shows tool buttons.

direction = ENUM (default: Horizonal)

defines the layout direction of the buttons.

Possible values: Vertical, Horizontal

border = BOOL (default: Yes)

sets whether buttons should have a border (not selectable in all show options).

showItemInternals = BOOL (default: No)

sets whether items show their internal name.

title = STRING

sets the title of the ButtonGroup frame if any (if used, implicitly sets border = Yes).

strips = INT (default: 1)

sets the number of "strips" in which the buttons are organized.

spacing = INT (default: 4)

sets the spacing between buttons (not used in all show options).

autoScale = BOOL (default: No)

sets the scaling of the images of toolbuttons to the MeVisLab global default tool button size.

GUI Controls

78

enumAutoFormat = BOOL (default: Yes)

sets whether the enumeration item names should be automatically formatted.

items

specifies the items shown in the ButtonBar. If not specified, uses items from enum field
automatically.

Each item is specified with the item tag which need to have a string value for an enum field and
an integer for an integer field.

Each item entry can hold the following tags:

image = FILE

sets the image to be used for the item.

title = STRING

sets the title to be used for the item. To have a toolbutton that only shows its icon, set this
explicitly to an empty string.

tooltip = STRING

sets the tool tip shown on the item (for the pushbutton, radiobuttons).

whatsThis = STRING

sets an additional help text for the item (for the pushbutton, radiobuttons).

accel = STRING

sets an accelerator key for this item.

normalOnImage = FILE

normalOffImage = FILE

activeOnImage = FILE

activeOffImage = FILE

disabledOnImage = FILE

disabledOffImage = FILE

specifies images for the different states of the buttons (not supported in all show modes).

// Integer field as radio buttons
ButtonBar someIntField {
 show = Radio
 direction = Vertical
 title = "Select child"
 items {
 item -1 { title = "Auto" }
 item 0 { title = "Child 0" }
 item 2 { title = "Child 2" }
 item 4 { title = "Child 4" }
 }
}
// Enum field as buttons
ButtonBar someEnumField {
 show = All
 direction = Vertical
 items {
 item "ADD" { image = $(LOCAL)/add.png [title= ...]}
 item "SUBTRACT" { image = $(LOCAL)/subtract.png }
 item "BLEND" { image = $(LOCAL)/blend.png }
 }
}

4.4.10. CheckBox

GUI Controls

79

CheckBox is a check box with a label or image to the right. It can be synchronized with an MLABBoolField
or MLABIntegerField. If a Field is given, the label of the Checkbox also supports drag-and-drop the
same way as Field-Controls.

Dynamic scripting: MLABCheckBoxControl

Tip

A CheckBox is used to implement a many-of-many choice, while a one-of-many choice is
done with a RadioButtonGroup or a ComboBox.

CheckBox [FIELD] {
 title = STRING
 checked = BOOL [No]
 image = FILE
 editable = BOOL [Yes]

 toggledCommand = SCRIPT
 fieldDragging = BOOL
}

checked = BOOL (default: No)

specifies the intially checkbox state.

title = STRING

sets the label text next to the checkbox (RichText).

image = FILE

specifies a pixmap to use next to the checkbox.

editable = BOOL (default: Yes)

sets whether an editing is allows of the value. If set to 'No' the value is not editable, but the text
is displayed normally.

(This is different from the general Control tag enabled, which enables or disables a whole control
(also called "grayed out").)

toggledCommand = SCRIPT (argument: toggledState)

sets a script command that is called when checkbox is checked or unchecked, passing the new
state as argument.

fieldDragging = BOOL

sets whether the dragging of the fields label onto other field label is possible to create connections.
The default is 'Yes' for normal panels and 'No' for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

4.4.11. ComboBox

ComboBox is a control that allows a string to be edited and also supports a pop-up of possible values.
If editing is disabled, only selecting a preset is possible. If the ComboBox has a given field, it is
synchronized in both directions. The field can be an enum field or a field of any type that reacts in a
meaningful way with a setStringValue/stringValue.

Dynamic scripting: MLABComboBoxControl

ComboBox [FIELD] {
 editable = BOOL [Yes]
 validator = REGEXP
 autoComplete = BOOL [Yes]
 caseSensitiveAutoComplete = BOOL [Yes]
 enumAutoFormat = BOOL [Yes]
 acceptWheelEvents = BOOL [Yes]
 maxCount = INT
 insertPolicy = ENUM [AtBottom]

GUI Controls

80

 duplicatesEnabled = BOOL [Yes]
 comboField = FIELD
 comboSeparator = STRING [,]
 activatedCommand = SCRIPT
 textChangedCommand = SCRIPT

 items {
 item {
 image = FILE
 title = STRING
 }
 ...
 }
}

editable = BOOL (default: Yes)

sets whether the comboxbox string is editable.

validator = REGEXP

Sets a regular expression to check the if the input line is valid when the combobox is editable. A
description of the regular expression syntax can be found here: http://doc.qt.io/qt-5/qregexp.html

Note: Items from the drop-down box should match the regular expression.

autoComplete = BOOL (default: Yes)

sets whether the combobox auto completes when editable.

caseSensitiveAutoComplete = BOOL (default: Yes)

sets whether the combobox auto completion is case sensitive.

enumAutoFormat = BOOL (default: Yes)

sets whether enum fields should avoid automatic formatting of enumeration names. Automatic
formatting means that a field called "MyName" receives the automatic title "My Name". If the enum
items have a common prefix, this is also stripped when automatic formatting is active.

acceptWheelEvents = BOOL (default: Yes)

sets whether the ComboBox should accept mouse wheel events to adjust its value.

textChangedCommand = SCRIPT(argument: string)

defines a script command that is executed when the text in the combo box changes (every time
the user types something).

activatedCommand = SCRIPT (argument: string)

defines a script command that is executed when a combobox item is selected or entered by typing
and pressing return.

maxCount = INT

sets the maximum number of items.

insertPolicy = ENUM (default: AtBottom)

defines where new items are inserted when combo box is editable.

Possible values: NoInsertion, AtTop, AtCurrent, AtBottom, AfterCurrent, BeforeCurrent

duplicatesEnabled = BOOL (default: Yes)

sets whether duplicate items are allowed to be entered when editable (does not apply to script
methods that insert items).

comboField = FIELD

specifies a field whose string value is split and used instead of given items.

When the comboField changes, the available combo list is updated.

comboSeparator = STRING (default:",")

sets a string value to use for splitting the string value of comboField into individual values.

http://doc.qt.io/qt-5/qregexp.html

GUI Controls

81

items

specifies the items shown in the ComboBox. May be omitted if comboField is given.

Each item is specified with the item tag.

Each item entry can hold the following tags:

image = FILE

defines an image to be used for the item

title = STRING

defines a title string to be used for the item

Example 4.10. ComboBox

Have a look at the module TestComboBox. This module features a ComboBox and some scripting for
adding new items dynamically, as well as clearing all items by scripting. The module also features the
use of icons in a ComboBox.

Because the major portion of this example module is implemented in scripting, the code is not printed
here.

4.4.12. MenuBar

MenuBar is a control that shows a menu bar with a number of pop-up menus. It can contain n SubMenu
entries. See SubMenu for details on the menu definition.

Typically a MenuBar should only be used on the top of a window, but there is no layout restriction on that.

Dynamic scripting: MLABMenuBarControl

MenuBar {
 SubMenu NAME {
 ...
 }
 // more SubMenus ...
}

Example 4.11. MenuBar

Have a look at the module TestPopupMenu. This module shows how to setup various menues on a
module's GUI. The first menu created on that module uses a MenuBar with only one entry.

4.4.13. ColorEdit

ColorEdit shows a colored box and allows to edit an RGB color. If the user double-clicks on the colored
box, a ColorDialog pops up and you can pick a color. The given field has to be of type MLABColorField.
The field is synchronized with the ColorEdit in both directions.

Dynamic scripting: MLABColorEditControl

Tip

You can also drag colors between color edits.

ColorEdit FIELD {
 mode = ENUM [Box]
}

GUI Controls

82

mode = ENUM (default: Box)

defines the type of editor. Possible values are box and triangle, where box just shows a colored box
and triangle shows a HSV color triangle for in-place editing.

Example 4.12. ColorEdit

Have a look at the module TestVerticalLayout. This module features, amongst others, the use of a
ColorEdit.

4.4.14. LineEdit

LineEdit shows a single line with an editable string. Typically it can be edited. If you want a non-editable
text, use Label instead. LineEdit typically is synchronized bidirectionally with a given field, but it can
also be used in scripting only.

Dynamic scripting: MLABLineEditControl

LineEdit [FIELD] {
 value = STRING
 textAlignment = ENUM [Left]
 minLength = INT [10]
 maxLength = INT
 hintText = STRING
 trim = ENUM [None]
 editMode = ENUM [Normal]
 returnPressedCommand = SCRIPT
 textChangedCommand = SCRIPT
 lostFocusCommand = SCRIPT
 validator = REGEXP
 updateFieldWhileEditing = BOOL [No]

 inlineWidgetsMargin = UINT [2]
 inlineWidgetsSpacing = UINT [2]
 leftInlineWidgets {
 // MDL Controls
 ...
 }
 rightInlineWidgets {
 // MDL Controls
 ...
 }

}

value = STRING

sets the value of the line edit if FIELD is omitted.

minLength = INT (default: 10)

sets the minimum number of characters that should be visible in the LineEdit.

maxLength = INT

sets the maximum allowed length of text.

hintText = STRING

defines a text shown in editable line edit if line edit is empty and does not have the focus.

updateFieldWhileEditing = BOOL (default: No)

sets whether the attached field is updated while the user types text in the line edit.

textAlignment = ENUM (default: Left)

defines how the text is aligned.

Possible values: Auto, Left, Right, Center

editMode = ENUM (default: Normal)

defines the mode, can be set for use for password editing.

GUI Controls

83

Possible values: Normal, Password

trim = ENUM (default: None)

defines the trimming mode of the string when it is not edited. Trimming only works if there is an
attached field.

Possible values: Left, Center, Right, None

Left: "...LongText"

Center: "Long...Text"

Right : "LongText..."

None: No trimming

returnPressedCommand = SCRIPT

defines a script command that is called when RETURN is pressed.

textChangedCommand = SCRIPT

defines a script command that is called when the text has changed (including pressing RETURN).

lostFocusCommand = SCRIPT

defines a script command that is called when the focus is lost. Use the isModified method to check
if the text was edited by the user

validator = REGEXP

specifies a regular expression to test if the entries are valid. A description of the regular expression
syntax can be found here: http://doc.qt.io/qt-5/qregexp.html

inlineWidgetsMargin = UINT

specifies the margin of the inline widgets.

inlineWidgetsSpacing = UINT

specifies the spacing of the inline widgets.

leftInlineWidgets

specifies the MDL controls to be used as inline widgets on the inner left of the line edit.

A typical control to use is a ToolButton with inlineDrawing set to true.

rightInlineWidgets

see leftInlineWidgets (but for the right side of the line edit)

Example 4.13. LineEdit

Have a look at the module TestVerticalLayout. This module features, amongst others, the use of a
LineEdit.

4.4.15. NumberEdit

NumberEdit shows a edit box for integers, floats and doubles. It also has a step up/step down button (if
a step value is given). A field has to be given to which the NumberEdit is synchronized bidirectionally.
If the field has a min/max value, the edited value is automatically clamped to these values. If no format
is given, floating point precision is 3.

Dynamic scripting: MLABNumberControl

NumberEdit FIELD {

http://doc.qt.io/qt-5/qregexp.html

GUI Controls

84

 step = FLOAT
 stepstep = FLOAT
 showStepButtons = BOOL
 format = FORMATSTRING
 minLength = INT [5]
 editAlign = ENUM [Right]
 wrap = BOOL [No]
 acceptWheelEvents = BOOL [Yes]
}

step = FLOAT

defines a step value for step buttons.

stepstep = FLOAT

defines an extra step value for stepping smaller steps.

showStepButtons = BOOL

sets whether step buttons are shown (only applicable if step is not 0).

format = STRING

defines a format to be printed as in sprintf, e.g., %4.5f or %x .

Note

You have to use the correct %d,%x ,%f,%g type for float/double/int fields

minLength = INT (default: 5)

sets the minimum number of characters that should be visible in the LineEdit.

editAlign = ENUM (default: Right)

defines the alignment of the text in the Line/NumberEdits.

Possible values: Left, Right, Center

wrap = BOOL

if FIELD has min/max value, this option sets whether step and stepstep wrap the value around when
reaching the boundaries.

acceptWheelEvents = BOOL (default: Yes)

sets whether the NumberEdit should accept mouse wheel events to adjust its value.

Example 4.14. NumberEdit

Have a look at the module TestHorizontalLayout. This module features, amongst others, the use of
a NumberEdit.

4.4.16. VectorEdit

VectorEdit allows showing/editing of a Vec2f/3f/4f/Color/Plane/Rotation field. It has n labels and number
edits depending on the type of the field. The VectorEdit is synchronized in both directions. Typical layout:
x | NumberEdit | y | NumberEdit | z | NumberEdit | d | NumberEdit | [Apply Button]

The Apply button is only needed for the Rotation field, because the rotation vector is always normalized
immediately. The Apply button can be enabled for other fields if needed.

Dynamic scripting: MLABVectorControl

VectorEdit {
 edit = BOOL [Yes]
 format = STRING
 minLength = INT [3]

GUI Controls

85

 editAlign = ENUM [Right]
 applyButton = BOOL
 sunkenVectorLabels = BOOL [Yes]
 componentTitles = STRING
 spacing = INT [0]
}

edit = BOOL (default: YES)

sets whether Labels are used instead of NumberEdits.

format = STRING

defines the format to be printed as in sprintf, e.g., %4.5f or %x .

Note

You have to use the correct %d,%x ,%f,%g type for float/double/int fields.

minLength = INT (default: 3)

sets the minimum number of characters that should be visible in the NumberEdits.

editAlign = ENUM (default: Right)

defines the alignment of the text in the NumberEdits.

Possible values: Left, Right, Center

applyButton = BOOL

sets whether the field has an Applybutton. It is enabled for Rotation fields, otherwise the default is
disabled. If turned on, you can edit all fields of a vector and apply it afterwards at once by pressing
"Apply".

sunkenVectorLabels = BOOL (default: Yes)

sets whether labels are drawn into the same frame as the LineEdit, otherwise they are drawn
separately.

componentTitles = STRING

specify titles for the separate component edit boxes, overriding the default values. Values must be
comma-separated. Extra values will be ignored, if too few values are specified the remaining labels
will be unchanged.

spacing = INT (default: 0)

sets the internal spacing between the GUI elements of a VectorEdit.

Example 4.15. VectorEdit

Have a look at the module DRR. This module uses two VectorEdit controls in a Grid layout.

Figure 4.10. VectorEdit Example

GUI Controls

86

4.4.17. DateTime

DateTime allows to display and edit a date, a time or a combined date/time value. These date/time
values must be provided as a string in a field and can have one of a few formats.

Please note that the display of the values happens with the currently selected locale and may change
with your language settings.

DateTime FIELD {
 mode = ENUM [DateTime]
 format = ENUM [Dicom]
 editable = BOOL [Yes]
 enableCalenderPopup = BOOL [Yes]
 withMilliSeconds = BOOL [5]
}

mode = ENUM (default: DateTime)

defines if the values are just date, just time or both date and time.

Possible values: Date, Time, DateTime

format = ENUM (default: Dicom)

defines the string format of the values, to interpret/format the values in the associated field.

ISO means ISO 8601, Dicom is the date/time value format of the DICOM standard and ML is a
modification of ISO with a space instead of the middle 'T'.

Possible values: ISO, Dicom, ML

editable = BOOL (default: Yes)

defines if the date/time should be editable. If a field is associated with this control, this value defaults
to the editable state of the field.

enableCalenderPopup = BOOL (default: Yes)

defines if the date should offer a calender popup. The calender popup currently does not work if the
control is used in a GraphicsView, so it should be disabled in this case.

withMilliSeconds = BOOL (default: No)

defines if time should be displayed with milliseconds. This might be useful for Dicom values, which
come with microsecond precision.

Example 4.16. DateTime

Have a look at the module TestDateTime. This module lists different configurations of the DateTime
control.

4.4.18. Slider

Slider shows a slider control for integers, floats and doubles. It can be arranged vertically or horizontally.
A field has to be given to which the Slider is synchronized bidirectionally. Min/max values are taken from
the field and will be adjusted automatically when the field's min/max value changes.

Dynamic scripting: MLABSliderControl

Slider FIELD {
 pageStep = FLOAT
 snap = FLOAT
 autoPageStep = FLOAT
 direction = ENUM [Horizontal]
 format = FORMATSTRING

GUI Controls

87

 tickmarks = BOOL [No]
 tracking = BOOL [Yes]

 pressedIndicatorField = FIELD
}

pageStep = FLOAT

sets a step value that is used when the user clicks left or right of the slider.

snap = FLOAT

sets a snap value for the slider. If set to a value != 0, the slider always snaps to a value that is a
multiple of this value starting at the sliders minimum.

pressedIndicatorField = FIELD

specifies a Boolean field that is set to true if the user presses the slider button and to false if the
user releases the slider button.

autoPageStep = FLOAT

sets a step value as percentage 0..1 of min/max value, overwrites pageStep.

direction = ENUM (default: Horizontal)

defines the layout direction of the slider.

Possible values: Vertical, Horizontal

format = FORMATSTRING

specifies how the value of the slider is shown in the tool tip, in sprintf format. Set this to a string
containing only one space to suppress the tool tip completely.

tickmarks = BOOL (default: No)

sets whether tick marks are enabled.

tracking = BOOL (default: Yes)

sets whether the slider updates the field while the slider is being dragged.

Example 4.17. Slider

Have a look at the module TestHorizontalLayout. This module shows the use of various controls for
a float number.

4.4.19. IntervalSlider

IntervalSlider shows a double slider control for integers, floats and doubles. It can be arranged vertically
or horizontally. A widthField and centerField pair or a lowerField and upperField pair has to be given to
which the Slider is synchronized bidirectionally. Min/Max values are taken from the lower/upper fields
or from the center field and will be automatically adjusted when field's min/max value changes.

When width/center is given, the slider acts in window/level mode so that the window can be of (max/
min) size. When lower/upper is given, it allows choosing lower and upper values and is bound strictly
to min/max values.

Dynamic scripting: MLABIntervalSliderControl

Tip

Only width/center or lower/upper field pairs can be given, NOT both!

IntervalSlider {
 step = FLOAT
 snap = FLOAT

GUI Controls

88

 direction = ENUM [Horizontal]
 tracking = BOOL [Yes]
 centerField = FIELD
 widthField = FIELD
 upperField = FIELD
 lowerField = FIELD

 pressedIndicatorField = FIELD
}

step = FLOAT

sets a step value that is used when the user clicks left or right of the slider.

snap = FLOAT

sets a snap value. If set to a value != 0, the slider always snaps to a value that is a multiple of this
value starting at the sliders minimum.

pressedIndicatorField = FIELD

specifies a Boolean field that is set to true if the user presses the slider button and to false if the
user releases the slider button.

direction = ENUM (default: Horizontal)

lspecifies the ayout direction of slider.

Possible values: Vertical, Horizontal

tracking = BOOL (default: Yes)

sets whether the slider updates the field while the slider is being dragged.

centerField = FIELD

specifies the center (alias level) field of the interval (min and max values are also taken from this
field).

widthField = FIELD

specifies the width (alias window) field of the interval.

lowerField = FIELD

specifies the lower field of the interval (min value is also taken from this field).

upperField = FIELD

specifies the upper field of the interval (max value is also taken from this field).

Example 4.18. IntervalSlider

Have a look at the module View3D. If the window 'View3D' (the default window) is opened,
IntervalSliders are used on the 'Clipping' tab for adjusting the size of a subimage.

Figure 4.11. IntervalSlider Example

4.4.20. ThumbWheel

ThumbWheel shows a wheel that can be turned. When the wheel is turned, it changes the associated
Field which can be an Integer, Float, Double or Rotation field. The ThumbWheel adapts to the given

GUI Controls

89

min and max value of a field automatically. For Rotation fields (which have not min/max value), it
automatically takes 0-359 degrees as min/max values. This can also be used for Float and Double fields
by setting rotationMode to Yes. Otherwise the field's min/max values are used.

Dynamic scripting: MLABThumbWheelControl

ThumbWheel FIELD {
 snap = FLOAT
 tracking = BOOL [Yes]
 wrapsAround = BOOL [No]
 direction = ENUM [Horizontal]
 ratio = FLOAT [1]
 rotationMode = BOOL [No]

 pressedIndicatorField = FIELD
}

snap = FLOAT

sets the snap value. The value of the wheel always snaps to a multiple of the snap value. If not set,
an automatic value is calculated.

tracking = BOOL (default: Yes)

sets whether the wheel updates the field while being dragged

pressedIndicatorField = FIELD

specifies a Boolean field that is set to true if the user presses the slider button and to false if the
user releases the slider button.

direction = ENUM (default: Horizontal)

defines the layout direction of slider.

Possible values: Vertical, Horizontal

ratio = FLOAT (default: 1)

defines the ratio between turning the wheel one whole turn and the min/max range.

wrapsAround = BOOL (default: No)

sets whether the slider wraps around when min/max is reached.

rotationMode = BOOL (default: No)

sets whether the field's min/max values are set to 0/359 degrees (in radian), to allow for an easy
setup for rotations.

Example 4.19. ThumbWheel

Have a look at the module DRR. There, ThumbWheels are used for adjusting the beam path rotation
around the z- and x-axis.

Figure 4.12. ThumbWheel Example

4.4.21. TextView

GUI Controls

90

TextView shows a text (which may be simple text or RichText). It can be editable or just a display, and
is scrollable. It typically shows a title and an Apply button. If a field is given, the fields string value is
shown. If a field is given, it is synchronized bidirectionally. Typically the user has to press the "Apply"
button to set the text to the field. If autoApply is on, each change to the text changes the field's string
value. The "Apply" button is only visible if edit is set to 'Yes'.

Dynamic scripting: MLABTextViewControl

TextView [FIELD] {
 title = STRING
 text = STRING
 edit = BOOL [Yes]
 autoApply = BOOL [No]
 hscroller = ENUM [Auto]
 vscroller = ENUM [Auto]
 textFormat = ENUM [Auto]
 console = BOOL [No]
 tabStopWidth = INT [80]
 wrap = ENUM [Widget]
 wrapColumn = INT [80]

 visibleRows = INT
 showLineNumbers = BOOL [No]
 syntaxHighlighting = STRING
 fieldDragging = BOOL
}

title = STRING

sets a string to show as title (otherwise the title is the name of the field).

text = STRING

sets a string to show if no field is given.

edit = BOOL (default: Yes)

sets whether the text field is editable. Otherwise it is a display only.

autoApply = BOOL (default: No)

sets whether the entered value is applied to the field whenever it changes.

textFormat = ENUM (default: Auto)

defines the format of the text. The default is 'Auto' which searches the first text line for <> tags and
switches between Rich and Plain. In Rich mode you can use HTML-like syntax for the text.

Possible values: Auto, Rich, Plain

hscroller = ENUM (default: Auto)vscroller = ENUM (default: Auto)

defines when a vertical/horizontal scrollbar is shown.

Possible values: Auto, On, Off

console = BOOL (Default: No)

sets whether to scroll to the end of the buffer on each append. Otherwise, it is scrolled to the new
field value.

tabStopWidth = INT (Default: 80 pixels)

sets the width of a tab stop in pixels.

wrap = ENUM (Default: Widget)

defines the wrap mode of the TextView. The default "Widget" wraps at word boundaries inside the
visible portion of the widget. "Off" switches off wrapping, "Column" wraps at a column specified by
wrapColumn.

Possible values: Widget, Column, Off

wrapColumn = INT (Default: 80)

sets the column where to wrap words if wrap is set to "Column".

GUI Controls

91

visibleRows = INT

sets the preferred size of the TextView to hold n visible rows.

showLineNumbers = BOOL (default: No)

sets whether line numbers are shown. Only filled lines are numbered if enabled. Numbering starts
with 1.

syntaxHighlighting = STRING

activates syntax highlighting for the specified language.

Possible values: MDL, Python, GLSL, JavaScript

fieldDragging = BOOL

sets whether the dragging of the fields label onto other field label is possible to create connections.
The default is 'Yes' for normal panels and 'No' for standalone applications. This also turns on the
connection icons and enables the field context menu on field labels.

4.4.22. HyperText

HyperText shows a RichText which can be any size and which is scrollable when bigger than the
available space. In contrast to TextView, the text is always read-only. The text can contain hyper links
of various kinds. The shown text can be specified directly in the text tag, from a text file or from a field.
If a field is used, the text is updated whenever the field changes.

Dynamic scripting: MLABHyperTextControl

Example of hyper links:

• Mevis Home Page

• MeVisLab Mail

• Link inside this document

• Link anchor inside this document

• A call to the command script with "somecommand" as

argument

• A link that shows a WhatsThis bubble that contains

RichText

For details, see the example module TestHyperText.

HyperText is derived from Frame.

HyperText {
 text = RICHTEXT
 textField = FIELD
 textFile = FILE
 command = SCRIPT

 // Additional: tags from Frame
}

text = RICHTEXT

sets the text that is shown. If you want to reference local files or images, use the $(LOCAL)/ variable
to address these.

textField = FIELD

specifies a field that provides the text. The text is updated whenever the field changes.

GUI Controls

92

textFile = FILE

specifies a file that provides the text. Local links in the text are resolved local to that file, so you can
link to other documents and images.

command = SCRIPT (arg: string)

defines a script command that is called for each "usercmd:" hyper link when the link is clicked. The
string after the "usercmd:" is passed to the command.

This tag allows to create dynamic scripts that are executed when a link is clicked. All clicks are
mapped to the given command, in which you can do different things depending on the argument
after the "usercmd:"

Example 4.20. HyperText

Have a look at the module TestHyperText. This module features a HyperText and documents some
of the available options.

Figure 4.13. TestHyperText Module

4.4.23. HyperLabel

HyperLabel is identical to HyperText in its features, but shows the text as a label. Therefore it is not
scrollable and automatically gets as big as the contained text. It behaves like a normal label but has
the features of dynamic scripted links. Another advantage over a normal label is that the text can be
selected and copied. For details see the HyperText control above. Note that title, titleField and titleFile
are aliases for text, textField and textFile of HyperText. If the displayed text should be arranged in one
line, it has to be enclosed in "<nobr></nobr>".

HyperLabel is derived from Frame.

Dynamic scripting: MLABHyperLabelControl

HyperLabel {

GUI Controls

93

 title = RICHTEXT
 titleField = FIELD
 titleFile = FILE
 command = SCRIPT

 // Additional: tags from Frame
}

title = RICHTEXT

sets the text that is shown. If you want to reference local files or images, use the $(LOCAL)/ variable
to address these.

titleField = FIELD

specifies a field that provides the text. The text is updated whenever the field changes.

titleFile = FILE

specifies a file to provide the text. Local links in the text are resolved local to that file, so you can
link to other documents and images.

Example 4.21. HyperLabel

Have a look at the module TestHyperText. This module features a HyperLabel at the very top of its GUI.

4.4.24. ListBox

ListBox shows a list of single line items. The list can be set by scripting or from fields providing the items
via splitting the string. The ListBox takes the string value of the values tag or of the given field and
creates items out of these strings. If a field is given, the list box is updated on the field's string value
changes. Scripting methods can be found in the MeVisLab Scripting reference.

Dynamic scripting: MLABListBoxControl

ListBox [FIELD] {
 values = STRING
 visibleRows = INT
 selectionMode = ENUM [Single]
 rowSeparator = STRING [@]

 selectionChangedCommand = SCRIPT
 selectedCommand = SCRIPT
 currentChangedCommand = SCRIPT
 doubleClickedCommand = SCRIPT
 returnPressedCommand = SCRIPT
 contextMenuOnEmptyList = BOOL [Yes]

 contextMenu {
 // See definition of SubMenu
 }
}

values = STRING

sets a string that is used for the values instead of the FIELD.

rowSeparator = STRING (default "@")

sets a separator string used for columns.

visibleRows = INT

sets a minimum height to show at least number of visible rows.

selectionMode = ENUM (default: Single)

defines if selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection

Single: Only a single item can be selected at any time.

GUI Controls

94

Extended: When the user selects an item in the usual way, the selection is cleared and the new item
selected. However, if the user presses the Ctrl key when clicking on an item, the clicked item gets
toggled and all other items are left untouched. If the user presses the Shift key while clicking on an
item, all items between the current item and the clicked item are selected or unselected, depending
on the state of the clicked item. Multiple items can be selected by dragging the mouse over them.

Multi: When the user selects an item in the usual way, the selection status of that item is toggled
and the other items are left alone. Multiple items can be toggled by dragging the mouse over them.

NoSelection: No item can be selected.

contextMenu

defines a context menu to show on right-click the list. See SubMenu on how to define a menu.

contextMenuOnEmptyList = BOOL (default: Yes)

sets whether the context menu should be shown on an empty list.

selectionChangedCommand = SCRIPT

defines a script command that is called when the selection has changed.

selectedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is selected (return is pressed or double-click
the item).

currentChangedCommand = SCRIPT (argument: index)

defines a script command that is called when the current item has changed.

doubleClickedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is double-clicked.

returnPressedCommand = SCRIPT (argument: index)

defines a script command that is called when return is pressed on an item.

Example 4.22. ListBox

Have a look at the module TestListBox. This module features a dynamic setting and clearing of items,
and it shows how to display items with icons.

Figure 4.14. TestListBox Module

4.4.25. ListView

GUI Controls

95

ListView shows a list containing strings in rows/columns. The list can be set by scripting or from fields
providing the items via splitting the string. The ListView takes the string value of the values tag or of the
given field and creates items out of these strings. If a field is given, updates everything (even number
of columns) from the field's string value changes. The first row in the string is taken as Header titles if
headerTitles is not specified, further rows can contain less columns. The header titles have to be present
even if the header visibility is turned off.

Limitations: Currently CheckBox items cannot contain RichText (see richText tag).

Dynamic scripting: MLABListViewControl and MLABListViewItem

ListView [FIELD] {
 values = STRING
 headerTitles = STRING
 rowSeparator = STRING [\n]
 columnSeparator = STRING [@]
 layout = STRING
 visibleRows = INT
 cellSpacing = INT
 selectionMode = ENUM [Single]
 tabDirection = ENUM [Vertical]
 sortByColumn = INT [-1]
 sortAscending = BOOL [Yes]
 header = BOOL [Yes]

 // advanced:
 richText = BOOL [No]
 toggleField = FIELD
 checkList = BOOL [No]
 updateDelay = UINT [0]

 rootIsDecorated = BOOL [No]

 contextMenuOnEmptyList = BOOL [Yes]

 contextMenu {
 // See definition of SubMenu
 }

 // scripting:
 selectionChangedCommand = SCRIPT
 currentChangedCommand = SCRIPT
 doubleClickedCommand = SCRIPT
 returnPressedCommand = SCRIPT
 clickedCommand = SCRIPT

 // advanced scripting
 itemRenamedCommand = SCRIPT
 itemCollapsedCommand = SCRIPT
 itemExpandedCommand = SCRIPT
 checkListItemChangedCommand = SCRIPT
 prepareEditCommand = SCRIPT
 contextMenuRequestedCommand = SCRIPT
}

values = STRING

sets a string that is used for the values instead of the FIELD.

headerTitles = STRING

A string that is used for the header titles instead of the first row item of values or the content of
FIELD. The same columnSeparator is used.

rowSeparator = STRING (default "\n")

sets a separator string that is used for rows.

columnSeparator = STRING (default "@")

sets a separator string that is used for columns.

layout = STRING

sets a string that defines the layout of the columns "rlcet, rlcet, ..." (right left center edit toggle).

rlc - results in different alignment (right, left, center).

GUI Controls

96

e - column is editable.

t - one of the columns may have the "t" toggle flag which means that a CheckBoxListItem is used
and the toggleField updates checkbox states.

visibleRows = INT

specifies a minimum size to fit number of visible rows (+ header) into the ListView.

cellSpacing = INT

sets an extra spacing value to all items.

selectionMode = ENUM (default: Single)

defines if selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection

See selectionMode for details.

tabDirection = ENUM (default: Vertical)

defines the direction when jumping to the next editable field through the use of the Tab key. When
Horizontal is selected, the cursor automatically switches to the next row when reaching the table
border.

Possible values: Vertical, Horizontal

sortByColumn = INT (default: -1)

sets the column number which is to sort by (default -1 means no sorting).

sortAscending = BOOL (default: Yes)

sets whether the sorting should be in an ascending order.

header = BOOL (default: Yes)

selects whether the header row is visible. If set to 'No', the header is not shown, while the titles still
have to be provided via headerTitles, values or FIELD.

richText = BOOL (Default: No)

sets whether the items in the list are used as RichText, allowing to change font type, size, colors, etc.

See Section 4.9.2, “RichText” for details on RichText.

toggleField = FIELD

specifies a field to set the toggle state encoded in 0/1 chars (field is updated/updates in both
directions).

checkList = BOOL (default: No)

sets whether the ListView uses CheckListItems. Normally this flag is not used; the ListView is a
ToggleList if a toggleField is specified.

updateDelay = UINT (default: 0)

sets the delay in milliseconds of the ListView update when the given FIELD is changed. If set to
zero the update is immediate. This flag can be useful when the ListView is updated very often due
to user interaction since it is slow to update. If you set, e.g., a value of 100, the ListView will only
update 10 times a second.

rootIsDecorated = BOOL (default: No)

sets whether icons are shown if a node (item) is collapsed or expanded.

contextMenu

defines a context menu to show on right-click the list. See SubMenu on how to define a menu.

GUI Controls

97

contextMenuOnEmptyList = BOOL (default: Yes)

sets whether the user's contextMenu is shown if the list has no entries.

selectionChangedCommand = SCRIPT

defines a script command that is called when the selection has changed. If you want to get the
selected item, call selectedItem() on the ListView.

currentChangedCommand = SCRIPT (argument: item)

defines a script command that is called when the current item has changed.

doubleClickedCommand = SCRIPT (argument: item, column)

defines a script command that is called when an item is double-clicked, column is the index of the
column where the double click happened.

returnPressedCommand = SCRIPT (argument: item)

defines a script command that is called when an item is renamed.

clickedCommand = SCRIPT (arguments: item, column)

defines a script command that is called when an item is clicked (press+release of mouse button),
column gives into which column the user clicked.

mouseButtonClickedCommand = SCRIPT(arguments: button, item, position, column)

this command is like clickedCommand, but provides more information. "button" is a number: 1 is the
left mouse button, 2 is the right mouse button and 4 the middle mouse button. "position" indicates
the click position inside the clicked cell.

Note

With the switch to Qt5 this isn't called for the right mouse button anymore; if
you used this to open a context menu for the current item you should use
contextMenuRequestedCommand instead.

itemRenamedCommand = SCRIPT (argument: item, column, newvalue)

defines a script command that is called when an item is renamed.

itemCollapsedCommand = SCRIPT (argument: item)

defines a script command that is called when an item with children is collapsed.

itemExpandedCommand = SCRIPT (argument: item)

defines a script command that is called when an item with children is expanded.

checkListItemChangedCommand = SCRIPT (argument: item, column)

defines a script command that is called when a check list item is toggled. The column
parameter is important if you have created check boxes on other columns than the first with
item.setCheckBoxOn().

prepareEditCommand = SCRIPT (argument: item, column)

defines a script command that is called when a cell in the list view is about to be edited. This is
mainly intended for use with the method setStringEditorValues() on the list view control which allows
to provide a combo box instead of a simple line edit widget for editing of cells with string content.

contextMenuRequestedCommand = SCRIPT(arguments: item, position, column)

this command is called when the context menu is requested, usually by pressing the right mouse
button, but, e.g., on Windows there is also a key for this. This is called before showing the context
menu defined by the contextMenu attribute. "position" indicates the global position where the context
menu should be opened.

Example 4.23. ListView

Have a look at the module TestListView. This module features the dynamic creation and removal of
different list items.

GUI Controls

98

Figure 4.15. TestListView Module

4.4.26. IconView

IconView shows a grid of icons with text. The items can be set by using the dynamic scripting API.

Dynamic scripting: MLABIconViewControl

IconView {
 allowRenaming = BOOL [No]
 autoArrange = BOOL [Yes]
 wordWrap = BOOL [No]
 maxTextLength = INT [255]
 maxItemWidth = INT
 selectionMode = ENUM [Single]
 arrangement = ENUM [TopToBottom]
 resizeMode = ENUM [Fixed]
 itemTextPos = ENUM [Right]
 spacing = INT

 selectionChangedCommand = SCRIPT
 currentChangedCommand = SCRIPT
 selectedCommand = SCRIPT
 doubleClickedCommand = SCRIPT
 returnPressedCommand = SCRIPT
 itemRenamedCommand = SCRIPT
 clickedCommand = SCRIPT
 rightButtonClickedCommand = SCRIPT
 pressedCommand = SCRIPT
 rightButtonPressedCommand = SCRIPT

 contextMenuOnEmptyList = BOOL [Yes]
 contextMenu {
 // See definition of SubMenu
 }
}

allowRenaming = BOOL (default: No)

sets whether in-place renaming of items is allowed.

autoArrange = BOOL (default: Yes)

sets whether items should be arranged anew when new items are inserted.

GUI Controls

99

resizeMode = ENUM (default: Fixed)

sets whether the items should be arranged when the view is resized.

Possible values: Fixed, Adjust

wordWrap = BOOL (default: No)

sets whether words are wrapped in the text.

maxTextLength = INT (default: 255)

sets the maximum number of displayed chars.

maxItemWidth = INT

sets the maximum width an item can have.

selectionMode = ENUM (default: Single)

defines if selection is possible and if multiple items can be selected at a time.

Possible values: Single, Extended, Multi, NoSelection

See selectionMode for details.

arrangement = ENUM (default: TopToBottom)

defines how items are arranged.

Possible values: LeftToRight, TopToBottom

itemTextPos = ENUM (default: Right)

sets the position of the text.

Possible values: Right, Bottom

spacing = INT

defines the spacing between items.

contextMenu

define a context menu to show on right-click the list. See SubMenu on how to define a menu.

contextMenuOnEmptyList = BOOL (default: Yes)

sets whether the user's contextMenu should be shown if the list has no entries.

selectionChangedCommand = SCRIPT

defines a script command that is called when the selection has changed. If you want to get the
selected item, call selectedItem() on the iconview.

selectedCommand = SCRIPT (argument: index)

defines a script command that is called when a single item is selected (in Single selection mode).

currentChangedCommand = SCRIPT (argument: index)

defines a script command that is called when the current item has changed.

doubleClickedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is double-clicked.

returnPressedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is renamed.

itemRenamedCommand = SCRIPT (argument: index, newvalue)

defines a script command that is called when an item is renamed.

clickedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is clicked with the left mouse button (mouse
button pressed and released).

GUI Controls

100

rightButtonClickedCommand = SCRIPT (argument: index)

defines a script command that is called when an item is clicked with the right mouse button (mouse
button pressed and released).

pressedCommand = SCRIPT (argument: index)

defines a script command that is called when the left mouse button is pressed on an item. This can,
e.g., be used to initiate dragging.

rightButtonPressedCommand = SCRIPT (argument: index)

defines a script command that is called when the right mouse button is pressed on an item. This
can, e.g., be used to initiate dragging.

Example 4.24. IconView

Have a look at the module TestIconView. This module features the dynamic adding and removing of
icon items, as well as a scripting example on how to react on clicking an icon.

Figure 4.16. TestIconView Module

4.5. Decoration GUI Controls

4.5.1. Label

Label shows a RichText label which can be multiline. The label content can be given as a text or by
the string value of a field.

Label is derived from Frame.

Dynamic scripting: MLABLabelControl

Label STRING {
 title = STRING
 titleField = FIELD
 image = FILE
 indent = INT
 buddy = NAME
 textAlignment = ENUM
 textWrap = ENUM [SingleLine]
 textFormat = ENUM [Auto]
 trim = ENUM [None]
 selectable = BOOL [No]
 allowLinks = BOOL [No]

 linkActivatedCommand = SCRIPT

GUI Controls

101

 linkHoveredCommand = SCRIPT

 // Additional: tags for Frame
}

title = STRING

sets the text of the label.

titleField = FIELD

specifies a field that provides the text for the label (text is updated when field changes).

image = FILE

specifies a pixmap that is shown on the label.

indent = INT

sets the number of pixels to indent the text.

buddy = NAME

sets the name of another control that is used as "buddy" of the label which gets the input focus when
the label gets the focus (e.g., by pressing an ALT key). Use the & char to set a keyboard shortcut.

textAlignment = ENUM

defines the alignment of the text in the label.

Possible values: Auto, TopLeft, Top, TopCenter, TopRight, Left, Center, Right, BottomLeft, Bottom,
BottomCenter, BottomRight

textWrap = ENUM (default: SingleLine)

defines how the text in the label is wrapped.

Possible values: SingleLine, WordBreak

textFormat = ENUM (default: Auto)

defines the text format. The default is Auto, which searches the first text line for <> tags and switches
between Rich and Plain. For keyboard shortcuts, write a & char in the plain text (&& means a literal
&). In Rich mode you can use html-like syntax for the label.

Possible values: Auto, Rich, Plain

trim = ENUM (default: None)

trims the string.

Possible values: Left, Center, Right, None

Left: "...LongText"

Center: "Long...Text"

Right : "LongText..."

None: No trimming

selectable = BOOL (default: No)

sets whether the selection of text is allowed with the mouse.

allowLinks = BOOL (default: No)

sets whether clicking on hyper links is allowed. It also enables linkHoveredCommand and
linkActivatedCommand. If the linkActivatedCommand is not set, the links are opened via the external
program given in MeVisLab preferences.

linkHoveredCommand = SCRIPT (arguments: String)

defines a command that is called when the user hovers over a link and allowLinks is set to true.

GUI Controls

102

linkActivatedCommand = SCRIPT (arguments: String)

defines a command that is called when the user clicks on a link and allowLinks is set to true.

4.5.2. Image

Control that shows an image. The image can be automatically resized to fit the available space.

Image is derived from Frame.

Dynamic scripting: MLABImageControl

Image {
 image = FILE
 scaleFactor = FLOAT [1.0]
 autoResize = BOOL [No]

 // Additional: tags for Frame
}

image = FILE

specifier the image to be shown. The recommended image format is PNG.

scaleFactor = FLOAT (default: 1.0)

sets the scale factor of the image.

autoResize = BOOL (default: No)

sets whether the image is resized according to its aspect ratio to fit the available space.

4.5.3. Separator

Separator is a visual separator (like <HR> in html). It has a direction and a frame style. Depending on
the direction, expandX and expandY are automatically set to expanding.

Separator is derived from Frame.

Dynamic scripting: MLABSeparatorControl

Separator {
 direction = ENUM [Horizontal]

 // Additional: tags for Frame
}

direction = ENUM (default: Horizontal)

defines the direction of the separator.

Possible values: Vertical, Horizontal

4.5.4. Empty

Empty is a control which represents empty space. Depending on its size policy, it will extend or be of
fixed size. Its tags are derived from the basic control, typically one only uses the given tag.

There are four aliases that have useful presets in vertical and horizontal direction:

VSpacer, SpacerX - control that fills the space vertically by expanding (when you have a control with a
stretch factor, you might want to change the stretch factor as well).

HSpacer, SpacerY - control that fills the space horizontally by expanding (when you have a control with
a stretch factor, you might want to change the stretch factor as well).

GUI Controls

103

Empty is derived from Control.

Empty {
 expandX = ENUM
 expandY = ENUM
 stretchX = INT
 stretchY = INT
 w = INT
 h = INT
}

4.5.5. ProgressBar

ProgressBar shows the current status as a bar between 0% and 100%. The status is controlled by a
FloatField which should yield values from 0 to 1.0. The field needs priority 0 to cause an update of the
progress immediately, otherwise the update is not guaranteed.

ProgressBar is derived from Frame.

Dynamic scripting: MLABProgressBarControl

ProgressBar FIELD {
 textVisible = BOOL [Yes]
 orientation = ENUM [Horizontal]

 // Additional: tags for frame
}

textVisible = BOOL (default: Yes)

sets whether the current completed percentage should be displayed.

orientation = ENUM (default: Horizontal)

sets the the orientation of the progress bar.

Possible values: Horizontal, Vertical

Example 4.25. ProgressBar

Have a look at the module WEMIsoSurface. On this module, a ProgressBar is used to display the
progress of scanning the slices of the input image.

Figure 4.17. ProgressBar Example

4.6. Menu GUI Controls
Menus can be created at various GUI controls, e.g., as a context menu. All these menus start at the
level of a SubMenu as given in the following section.

Example 4.26. PopupMenu, SubMenu and MenuItem

For the use of the controls PopupMenu, SubMenu and MenuItem, have a look at the module
TestPopupMenu.

GUI Controls

104

Figure 4.18. TestPopupMenu Module

4.6.1. PopupMenu

A PopupMenu defines a menu that can be popped up via scripting. It is derived from the SubMenu
control and is not visible by default. It should be given a name and then be shown via the popup()
method. It pops up at the cursor position or at a screen point given by the caller.

Dynamic scripting: MLABPopupMenuControl

PopupMenu {
 name = NAME
 showCommand = SCRIPT
 hideCommand = SCRIPT

 // possible children:
 Separator = ""
 SubMenu = NAME { ... }
 MenuItem = NAME { ... }

 // advanced children:
 Action = NAME
}

name = NAME

sets the internal name used in scripting (like Control name/instanceName).

showCommand = SCRIPT

hideCommand = SCRIPT

defines script commands that are called when SubMenu is shown/hidden.

4.6.2. SubMenu

A SubMenu can contain multiple MenuItems, SubMenus, Separators and Actions. When an item is
selected, a script command is called on the item. An ALT keyboard shortcut can be assigned with the
"&" character.

Actions are an advanced concept and are currently only supported for the internal MeVisLab menus.

Dynamic scripting: MLABPopupMenuControl

SubMenu STRING {
 name = NAME
 showCommand = SCRIPT
 hideCommand = SCRIPT

 itemActivatedCommand = SCRIPT

GUI Controls

105

 // possible children:
 Separator = ""
 SubMenu = NAME { ... }
 MenuItem = NAME { ... }

 // advanced children:
 Action = NAME
}

name = NAME

sets the internal name used in scripting (like Control name/instanceName).

showCommand = SCRIPT

hideCommand = SCRIPT

defines script commands that are called when SubMenu is shown/hidden.

itemActivatedCommand = SCRIPT

defines a script command that is called when a direct child of the SubMenu is activated.

4.6.2.1. MenuItem

MenuItems can be declared inside of a SubMenu or a tag used as a submenu (e.g., contextMenu,
menuBar).

Dynamic scripting: MLABPopupMenuControl, using the name of the menu item.

MenuItem STRING {
 command = SCRIPT
 name = NAME
 field = NAME
 enabled = BOOL [Yes]
 dependsOn = FIELDEXPRESSION
 visibleOn = FIELDEXPRESSION
 checked = BOOL [No]
 icon = FILE
 accel = KEYSEQUENCE
 whatsThis = STRING

 // advanced:
 slot = QTSLOT
 receiver = NAME

 // possible child:
 TouchBarItem { ... }
}

command = SCRIPT (arguments: name)

defines a script command that is called when the item is selected.

name = NAME

sets a name for this item that can be used in the interface of the SubMenu to talk to the item via
scripting.

field = NAME

sets an existing field which can be of type bool or trigger. If this is used, selecting this menu item
either toggles the Boolean value or notifies the trigger field.

accel = KEYSEQUENCE

sets an additional accelerator key sequence.

enabled = BOOL (default: Yes)

sets whether the item is enabled (or disabled/grayed out otherwise).

dependsOn, visibleOn = FIELDEXPRESSION

determines whether the button is disabled/hidden, otherwise enabled/visible. See dependsOn/
visibleOn of the generic Control for a more detailed explanation of the expression.

whatsThis = STRING

sets an additional explanation text.

GUI Controls

106

icon = FILE

specifies an additional icon that is shown.

checked = BOOL (default: No)

sets the initial state for toggle items.

slot = QTSLOT

specifies a Qt slot instead of a script command (used for MeVisLab internal menus). This is an
advanced feature.

receiver = NAME

specifes the name of an Qt receiver object (used for MeVisLab internal menus). This is an advanced
feature.

4.6.2.2. TouchBarItem
Note: At the time of writing, TouchBarItems are only applicable to Apple Macintosh computers with a
Touch Bar running macOS.

TouchBarItems can be declared inside of a MenuItem or an Action.

TouchBarItem {
 id = NAME

 // One of the following three entries must be used
 imageName = NAME
 icon = IMAGEFILE
 title = TRANSLATEDSTRING

 customizationLabel = TRANSLATEDSTRING
 visibilityPriority = FLOAT [0]
}

id = NAME

The identifier for this item. This value must be globally unique. If no name is provided, it is derived
from entries of the MenuItem and prefixed with de.mevis.mevislab.touchbar.item. .

imageName = NAME

Creates a touch bar item with an image object associated with this specified name.

icon = IMAGEFILE

Creates a touch bar item with an image object using the specified file.

title = TRANSLATEDSTRING

Creates a touch bar item using this string as the title.

customizationLabel = TRANSLATEDSTRING

The user-visible string identifying this item during touch bar customization. If no string is provided,
it is derived from the label of the MenuItem or Action.

visibilityPriority = FLOAT (default: 0)

If there are more items in the Touch Bar than can be displayed, some will be hidden. Items with high
visibility priority will be hidden after items with low visibility priority. 1000 is a high priority value, 0
is normal priority, and -1000 is a low priority value.

4.6.2.3. Separator

Creates a separator in the menu.

Separator = ""

4.7. Complex GUI Controls
4.7.1. Panel

GUI Controls

107

Panel is a control that can "clone" a subregion of a given module's windows. If panel and
panelByGroupTitle are not specified, the control shows the window of a module given by its name. If
the window is not specified, the whole default window is shown.

This also clones all FieldListeners contained in the cloned code, so that a cloned panel should work like
the original one. The window you get when you call window() in the context of the cloned script will be
the window in which the Panel is.

Note that no field connections can be established between fields that are shown on a macro's GUI
because of a panel declaration. In order to be able to establish a field connection to such a field, you
need to declare the according field in the macro module's interface section.

Panel is derived from Control.

Dynamic scripting: MLABPanelControl

Tip

When you use the Panel control, you should use the panel tag and use the panelName tag
in the module to mark the region you want to clone. This allows the developer of the module
to see that someone is using that part of the module panel somewhere else.

Warning

panelByGroupTitle is deprecated and should not be used in new scripts (see above tip).

Panel {
 module = NAME
 panel = NAME
 window = NAME

 // tags that should not be used any more in new panels:
 panelByGroupTitle = NAME
}

module = NAME (required)

sets the name of the module in the network.

panel = NAME

sets a name to search for in the given module by looking for a panelName tag with the name NAME.

window = NAME

sets the name of the window to clone.

panelByGroupTitle = NAME (deprecated!)

sets a name to search for by comparing NAME with the values of all group tags in the module's
window.

Example 4.27. Panel

Have a look at the module View3D. As explained in the Window example, the View3D module defines
four different windows. The first window (named 'View3D') defines a viewer and a settings panel. The
latter has its panelName set to 'Settings'. The third window of the module (named 'Settings') just cuts
out the settings part of the first window by using the Panel tag.

4.7.2. DynamicFrame

DynamicFrame shows a user-defined MDL script file or dynamically generated string. Its contents can
be changed interactively from Python. This gives the user the power to create and update dynamically
user interfaces in an application, without the need to specify the complete GUI when the application
script is started.

GUI Controls

108

The controls in the content of the frame (named with the name tag) are visible in the global scope of
the window.

You can use the Python methods setContentFile(string) or setContentString(string).

Dynamic scripting: MLABDynamicFrameControl

Have a look at the module TestDynamicFrames that shows how to use dynamic frames in scripting.

Tip

If you dynamically add modules to your application network, you can use this control to
clone a panel of the new module or to show fields of the new module on the fly.

DynamicFrame {
 autoSize = BOOL [Yes]
 contentFile = FILE
}

autoSize = BOOL (default: Yes)

sets whether the current sizes of the contained GUI should be used.

contentFile = FILE

specifies the initially shown MDL file. If no file is specified, the DynamicFrame is empty.

4.7.3. Viewer

Viewer shows an OpenInventor viewer. Typically the Inventor viewer is taken from a SoViewerNode
module in the network, especially SoExaminerViewer, SoRenderArea, etc. A viewer has to be attached
to a SoNode field, typically the "self" field of an InventorModule. If you specify a type, the viewer is
generated independent from any viewer node in the network.

Dynamic scripting: MLABInventorViewerControl

Tip

If you want to access the internal Inventor viewer, you should use the viewer together with a
SoExaminerViewer or a SoRenderArea on a network and use the 'self' field of that module
for the viewer.

Viewer FIELD {
 viewing = BOOL [Yes]
 hiResRendering = BOOL [No]
 backgroundColor = COLOR
 type = NAME
 clone = BOOL [No]
 delay = BOOL [Yes]
 values = STRING

 popup = BOOL [No]

 popupMenu {
 // see tags for SubMenu
 }
}

viewing = BOOL (default: Yes)

sets whether the viewer is in viewing mode.

hiResRendering = BOOL (default: No)

sets whether the viewer enables OpenGL for high-resolution drawing on supported systems.
Because adding more pixels to renderbuffers has performance implications, you must explicitly opt
in.

GUI Controls

109

popup = BOOL (default: No)

sets whether the viewer has a pop-up menu.

backgroundColor = COLOR

specifies the background color of the viewer.

type = NAME

sets the type of the viewer if the SoNodeField is not from a SoViewerNode module.

Possible values: SoExaminerViewer, SoRenderArea, SoCustomExaminerViewer

clone = BOOL (default: No)

sets whether the viewer shoud be cloned (this is automatically done when two viewers are show
from the same module in the network).

delay = BOOL (default: Yes)

sets whether the viewer is created in delayed mode. That means that its content is rendered AFTER
the window is drawn the first time, to avoid waiting for the drawing of the rest of the GUI.

values = STRING

sets the field values of the viewer in Inventor style (you need to know what you are doing and which
fields are available).

popupMenu

defines a menu that is shown when the user clicks the right mouse button on the viewer. The internal
pop-up menu of the viewer (from OpenInventor) has to be turned off, otherwise this menu will not
be shown. See SubMenu for details on how to define a menu.

Example 4.28. Viewer

Have a look at the module TestViewers. This module shows the use of the Viewer tag in different
settings.

Figure 4.19. TestViewers Module

4.7.4. PathBrowser

GUI Controls

110

PathBrowser displays a directory tree for browsing. Clicking a directory will open and show its
subdirectories. Double-clicking a directory selects a directory. Typically this is used together with the
DicomBrowser.

Pressing "r" on a PathBrowser always resets the current path to the original root path.

PathBrowser is derived from Control.

Dynamic scripting: MLABPathBrowserControl

PathBrowser {
 root = PATH
 visibleRows = INT
 minLength = INT
 sortBy = STRING [Name]
 cd = STRING

 pathSelectedCommand = SCRIPT
 pathDblClickedCommand = SCRIPT
}

root = PATH

specifies the root path of the PathBrowser. If not given or if PATH does not exist or is not readable,
the current working directory is used.

visibleRows = INT

sets the minimum number of visible rows (defining the minimum height).

minLength = INT

sets the minimum width to show INT characters.

sortBy = ENUM (default: Name)

specifies the sorting order of directories.

Possible values: Name, Size, Time, Unsorted

cd = PATH

specifies the relative path from root to the initially opened subdirectory.

pathSelectedCommand = SCRIPT (argument: absolute path)pathDblClickedCommand = SCRIPT

(argument: absolute path)

defines a script command that is called when the path is selected/double-clicked with left mouse
button.

4.7.5. DicomBrowser and DicomBrowserTable

The DicomBrowser displays a configurable tree view on a set of Dicom files. The data is arranged
according to the Dicom hierarchy of the files. The DicomBrowser allows copying, moving and linking
(only on Unix, yet) of Dicom data by dragging between DicomBrowsers. Dropping an entry from a
DicomBrowser to a PathBrowser sets the Path of the PathBrowser to the directory of the dropped entry.
Deleting selected datasets is also supported by pressing DEL.

A DicomBrowserTable that is connected to a DicomBrowser always shows a table view of the
dataset currently selected in the DicomBrowser. The DicomBrowser and the DicomBrowserTable are
synchronized in both directions. Double-clicking a dataset selects it for opening by other controls.

Pressing "r" on these controls reloads the currently viewed datasets, thus allowing the DicomBrowser
to be synchronized with external modified directories.

DicomBrowser and DicomBrowserTable are derived from Control.

Dynamic scripting: MLABDicomBrowserControl and MLABDicomBrowserTableControl

GUI Controls

111

DicomBrowser {
 name = STRING
 visibleRows = INT
 minLength = INT
 project = STRING
 hierarchy = STRING [first one available]
 rootDir = STRING
 treeRootTitle = STRING
 fileExtension = STRING [dcm]
 includeFilter = STRING
 excludeFilter = STRING
 recursive = BOOL [Yes]
 showDicomFiles = BOOL [Yes]

 selectedCommand = SCRIPT
 deletionRequestedCommand = SCRIPT
 dblClickedCommand = SCRIPT
}

DicomBrowserTable {
 name = STRING
 visibleRows = INT
 minLength = INT
 contextMenuOnEmptyList = BOOL

 contextMenu {
 // See definition of SubMenu
 }
}
Execute = "*py: ctx.control("myDicomBrowser").setTableView(ctx.control("myDicomBrowserTable")) *"

visibleRows = INT

sets the minimum number of visible rows (defining the minimum height).

minLength = INT

sets the minimum width to show INT characters.

project = STRING

specifies the name of a DicomProject with presets for the DicomBrowser.

hierarchy = STRING

specifies the name of a Dicom hierarchy which is displayed by the DicomBrowser.

rootDir = PATH

specifies the path to DicomFiles. Setting a PathBrowser overwrites this value.

treeRootTitle = STRING

sets the title of the tree view root node which is empty by default.

fileExtension = STRING

sets the filter of the file search to files with this extension.

includeFilter = STRING

sets a filter string to include files in the search.

excludeFilter = STRING

sets a filter to exclude files from the search.

recursive = BOOL

sets whether files are searched recursively.

showDicomFiles = BOOL (default: Yes)

sets whether the leaves of a Dicom hierarchy in the Browser are shown.

contextMenu

defines a context menu to show on right-click the list. See SubMenu on how to define a menu.

contextMenuOnEmptyList = BOOL (default: Yes)

sets whether the user's contextMenu is shown if the list has no entries.

GUI Controls

112

selectedCommand = SCRIPT (argument: absolute path of dataset)

defines a script command that is called when a dataset is selected.

deletionRequestedCommand = SCRIPT (argument: absolute path of dataset)

defines a script command that is called when a dataset should be deleted.

dblClickedCommand = SCRIPT (argument: absolute path of dataset)

defines a script command that is called when a dataset is double-clicked.

4.7.6. MoviePlayer

The MoviePlayer allows to play AVI movies. The movie can be given as a filename and the control can
be controlled interactively by Python.

MoviePlayer is derived from Control.

Dynamic scripting: MLABMoviePlayerControl

MoviePlayer {
 filename = FILE
 autoStart = BOOL [No]
 enableContextMenu = BOOL [Yes]
 showControls = BOOL [Yes]
}

filename = FILE

specifies the filename of the movie (should be an AVI).

autoStart = BOOL (default: No)

sets whether the movie should start immediately.

enableContextMenu = BOOL (default: Yes)

sets whether a context menu with advanced control functions is enabled.

showControls = BOOL (default: Yes)

sets whether play, stop, pause, etc., controls are shown to the user.

4.7.7. ScreenshotGallery

The ScreenshotGallery can be used in an application to collect screenshots for that application. It can
be used via scripting to get a list of taken screenshots and movies, to control to which directory these
files are written, etc.

ScreenshotGallery is derived from Control.

Dynamic scripting: MLABScreenshotGalleryControl

ScreenshotGallery {
 application = NAME
}

application = NAME

defines the name of the application (macro module) whose screenshots should be stored.

4.7.8. WebEngineView

The MDL WebEngineView provides a complete web engine to the MDL developer. It is based on the
open-source Chromium engine which powers most browsers nowadays.

http://www.chromium.org/

GUI Controls

113

We recommand that you use this control only to display content controlled by you, since we can not
provide the same level/frequency of security updates as the main browser applications, but at the same
time use the same broad code base which is subject to intense scrutiny regarding code flaws.

It offers:

• A standards compliant web browser.

• ECMAScript 2021, CSS2, CSS3 and HTML5.

• Scripting interface to control the browser content, text selection, menu, etc.

• Scripting interface to call browser JavaScript from MeVisLab Python.

• Access to MeVisLab objects from within JavaScript through the WebChannel API (see the "Scripting"
demo in the TestWebEngineView example module).

• WebInspector for debugging HTML, CSS and JavaScript (Inspect option on context menu).

• PDF Viewing.

Note

This requires setting a special flag from Python code after the control has been created:

from PythonQt.QtWebEngineWidgets import QWebEnginePage, QWebEngineSettings
...
webControl = ctx.control("yourwebview")
webControl.webPage().settings().setAttribute(QWebEngineSettings.PluginsEnabled, True)

You might call this, e.g., from an Execute command in your panel.

Note that this enables support for all Pepper API plugins!

WebEngineView is derived from Control.

Dynamic scripting: MLABWebEngineViewControl

WebView {
 contentUrl = URL
 contentFile = FILE
 contentString = STRING
 contentStringBaseUrl = URL

 loadStartedCommand = SCRIPT
 loadProgressCommand = SCRIPT
 loadFinishedCommand = SCRIPT

 linkClickedCommand = SCRIPT
 urlChangedCommand = SCRIPT
 selectionChangedCommand = SCRIPT

 logConsoleOutput = BOOL
 enablePrinting = BOOL [No]

 linkDelegation = ENUM

contentUrl = URL

sets the content of the WebEngineView to the given Url, e.g., https://www.mevislab.de

contentFile = FILE

sets the content of the WebEngineView to the given local file, e.g., $(LOCAL)/SomeFile.html

contentString = STRING

sets the content of the WebEngineView to the given HTML string. If no contentStringBaseUrl is
given, the $(LOCAL) MDL variable is used as baseUrl for the string, so relative links are resolved
relative to $(LOCAL).

https://doc.qt.io/qt-5/qtwebengine-features.html#pepper-plugin-api

GUI Controls

114

contentStringBaseUrl = URL

sets a different base Url when using contentString.

loadStartedCommand = SCRIPT

defines a script command that is called when the WebEngineView starts loading a document.

loadProgressCommand = SCRIPT (argument: float progress)

defines a script command that is called with values from 0. to 1. while the WebEngineView loads
the document.

loadFinishedCommand = SCRIPT (argument: bool success)

defines a script command that is called when the document has finished loading.

linkClickedCommand = SCRIPT (arguments: QUrl)

defines a script command that is called for all clicked links.

urlChangedCommand = SCRIPT (arguments: QUrl)

in contrast to the command above this command is always called when the displayed URL changes,
not only if a link was clicked. This may also incorporate page forwarding.

selectionChangedCommand = SCRIPT

defines a script command that is called whenever the text selection in the WebEngineView changes.

enablePrinting = BOOL (default: No)

defines if a JavaScript call of window.print() results in opening a print dialog and printing of the
content. It will also add a print entry to the context menu of the view if enabled.

linkDelegation = ENUM (default: depends on linkClickedCommand)

defines how clicks on links are handled. All links that are delegated are passed to the
linkClickedCommand instead of switching the WebEngineView to the Url internally. By default
links are delegated if the linkClickedCommand is set. If the linkClickedCommand is not implemented
but linkDelegation is set to All, the delegated URLs are passed to MeVisLab, which uses the default
programs registered for the scheme of the url to open the URL.

• None: no links are delegated

• All: all clicked links are delegated

4.7.9. WebView

The MDL WebView provides a complete web engine to the MDL developer. It is based on the open-
source WebKit engine which powers Apple's Safari.

Since the underlying widget isn't maintained in Qt anymore we recommend that you rather use the
WebEngineView control if you don't need the special features of this control. You should especially not
display external content that you don't control with it, since there are known security issues with this
widget.

It offers:

• A standards compliant web browser.

• JavaScript 1.5, CSS2, CSS3 and HTML5 Scripting interface to control the browser content, text
selection, menu, etc.

• Scripting interface to call browser JavaScript from MeVisLab Python.

• Scripting of MeVisLab objects from within JavaScript (e.g., MLAB, ctx).

http://webkit.org/

GUI Controls

115

• Support for NSAPI conformant browser plugins (e.g., Flash, Silverlight), typically plugins installed for
Firefox plugins will just work.

• Support for embedded MDL controls inside of HTML documents.

• WebInspector for debugging HTML, CSS and JavaScript (Inspect option on context menu).

The WebView has a rich scripting API which you can find in the MeVisLab Scripting Reference (look
for MLABWebViewControl).

The WebView has special support for local URLs that are relative to MeVisLab packages. You can write
a URL relative to a MeVisLab package by writing href="/MLAB_PackageGroup_PackageName/...", e.g.,
href = "/MLAB_MeVisLab_Standard/Modules/Macros/Tests/GUI/TestWebView/Intro.html".

For detailed examples, have a look at the TestWebView module which shows most of the possibilities
of the WebView.

WebView is derived from Control.

Dynamic scripting: MLABWebViewControl

WebView {
 contentUrl = URL
 contentFile = FILE
 contentString = STRING
 contentStringBaseUrl = URL

 loadStartedCommand = SCRIPT
 loadProgressCommand = SCRIPT
 loadFinishedCommand = SCRIPT

 enableScriptingObjects = BOOL [No]
 enableEmbeddedMDL = BOOL [No]
 enablePlugins = BOOL [No]
 allowPopups = BOOL [No]

 javaScriptInitCommand = SCRIPT
 linkClickedCommand = SCRIPT
 selectionChangedCommand = SCRIPT

 linkDelegation = ENUM [Extern]

contentUrl = URL

sets the content of the WebView to the given Url, e.g., https://www.mevislab.de

contentFile = FILE

sets the content of the WebView to the given local file, e.g., $(LOCAL)/SomeFile.html

contentString = STRING

sets the content of the WebView to the given HTML string. If no contentStringBaseUrl is given, the
$(LOCAL) MDL variable is used as baseUrl for the string, so relative links are resolved relative to
$(LOCAL).

contentStringBaseUrl = URL

sets a different base Url when using contentString.

loadStartedCommand = SCRIPT

defines a script command that is called when the WebView starts loading a document.

loadProgressCommand = SCRIPT (argument: float progress)

defines a script command that is called with values from 0. to 1. while the WebView loads the
document.

loadFinishedCommand = SCRIPT (argument: bool success)

defines a script command that is called when the document has finished loading.

GUI Controls

116

enableScriptingObjects = BOOL (default: No)

sets whether MeVisLab objects like ctx, MLAB, MLABFileManager, etc., are added to the JavaScript
engine of the WebView, so that they can be used to script MeVisLab from within the WebView
JavaScripting.

enableEmbeddedMDL = BOOL (default: No)

sets whether MDL control are embedded inside of HTML pages using the HTML object tag. Have
a look at the TestWebView module for an example of embedded MDL.

The window/panel/module parameters are optional. If no module is given, the current module
associated with the MDL file is used. If no window is given, the default window is used. If a panel is
given, MeVisLab searches for an MDL section with panelName equal to the given panel name.

<object type="text/mevislab-mdl" >
<param name="window" value="nameOfSomeMDLWindow"> </param>
<param name="panel" value="nameOfSomePanel"> </param>
<param name="module" value="instanceNameOfModule"></param>
</object>

enablePlugins = BOOL (default: No)

sets whether NSAPI plugin support is enabled. You need to enable this so that Flash/Silverlight can
be used inside of HTML pages.

allowPopups = BOOL (default: No)

sets whether pages can create popup pages from JavaScript or when clicking on a link. This is
probably not advisable for unknown sources, since there is no popup-blocker.

Note

MeVisLab scripting objects and embedded MDL are not available in popups.

javaScriptInitCommand = SCRIPT

defines a script command that is called when a the JavaScript engine of a HTML page is reinitialized.
It can be used to add objects to the engine.

linkClickedCommand = SCRIPT (arguments: QUrl)

defines a script command that is called for all clicked links that are delegated via the linkDelegation
tag.

selectionChangedCommand = SCRIPT

defines a script command that is called whenever the text selection in the WebView changes.

linkDelegation = ENUM (default: External)

defines how clicks on links are handled. All links that are delegated are passed to the
linkClickedCommand instead of switching the WebView to the Url internally. By default, all external
links (which are not file:// links) are delegated. If the linkClickedCommand is not implemented,
the delegated URLs are passed to MeVisLab, which uses the default programs registered for the
scheme of the url to open the URL.

• None: no links are delegated

• External: external links (which do not point to the local disk using file://) are delegated

• All: all links that are clicked are delegated

4.7.10. GraphicsView

The MDL GraphicsView offers a freely configurable area which can contain:

• Graphics items (Lines, Pixmaps, RichText...).

GUI Controls

117

• MDL Panels.

• Inventor Render Areas.

• WebKit HTML.

• Vertical, Horizontal, Grid and Anchor layouts.

• HotArea layout with HotAreas.

These items can be arranged and blended over each other as desired. This allows to create new types
of interactive GUIs including animated transitions.

For detailed examples, have a look at the TestGraphicsView and TestGraphicsViewHotArea modules
which demonstrate some of the possibilities.

GraphicsView is derived from Control.

Dynamic scripting: MLABGraphicsViewControl

GraphicsView {
}

4.7.11. ItemModelView

The MDL ItemModelView provides a view on the ItemModel base object contained in the given field
which represents an abstract hierarchical item model with generic named attributes. The user can select
which attributes are displayed in the resulting table and in which way.

This control resembles the ListView control in appearance, but takes a more abstract approach and
clearly differentiates between model and view.

ItemModelView FIELD {
 selectionField = FIELD
 currentField = FIELD
 doubleClickedField = FIELD
 clickedColumnField = FIELD
 selectableAttribute = NAME [none]
 idAttribute = NAME [none]
 idAsFullPath = BOOL [false]
 idPathSeparator = STRING
 idSeparator = STRING
 selectionMode = ENUM [Single]
 tabDirection = ENUM [Vertical]
 sortByColumn = INT [-1]
 sortAscending = BOOL [true]
 header = BOOL [true]
 alternatingRowColors= BOOL [false]
 autoExpandAll = BOOL [false]
 autoExpandToDepth = INT [0]
 visibleRows = INT [5]
 editTrigger = STRING [SelectedClicked and EditKeyPressed]

 editableAttribute = NAME [false]
 checkboxEditableAttribute = NAME [false]
 automaticParentCheckboxState = BOOL [false]
 colorAttribute = NAME [none]
 tooltipAttribute = NAME [none]
 boldFontAttribute = NAME [false]
 italicFontAttribute = NAME [false]
 floatDecimalPlaces = INT [-1]
 automaticResize = BOOL [true]
 align = ENUM [Left]
 headerAlign = ENUM [Left]

 DerivedAttribute NAME {
 sourceAttribute = NAME
 defaultValue = STRING
 defaultPathValue = FILE

GUI Controls

118

 Case STRING {
 value = STRING
 pathValue = FILE
 }
 ...
 }
 ...

 ComputedAttribute NAME {
 expression = EXPRESSION
 }
 ...

 Column STRING {
 displayAttribute = NAME (see text)
 displayAsColor = BOOL [false]
 editAttribute = NAME (see text)
 editableAttribute = NAME (see text)
 checkboxAttribute = NAME (see text)
 checkboxEditableAttribute = NAME (see text)
 automaticParentCheckboxState = BOOL [false]
 iconAttribute = NAME [none]
 tooltipAttribute = NAME [none]
 colorAttribute = NAME [none]
 sortAttributes = STRING (see text)
 comboboxAttribute = NAME [none]
 comboboxTooltipsAttribute = NAME [none]
 comboboxItemDelimiter = STRING [|]
 boldFontAttribute = NAME [false]
 italicFontAttribute = NAME [false]
 visibleOn = FIELDEXPRESSION [1]
 floatDecimalPlaces = INT [-1]
 automaticResize = BOOL (see text)
 align = ENUM (see text)
 headerAlign = ENUM (see text)
 }
 ...
}

selectionField = FIELD

a string field that will contain the currently selected items.

How items are identified must be specified with the idAttribute and following tags.

currentField = FIELD

a string field that will contain the current (focused) item.

doubleClickedField = FIELD

a string field that will receive the last double-clicked item.

clickedColumnField = FIELD

an integer field that can be used in conjunction with the doubleClickedField and that contains
the index of the column where the last click happened. This will be updated before the
doubleClickedField is touched, but the clickedColumnField may not be touched if the column didn't
change.

selectableAttribute = STRING

specify the name of an attribute that will determine if an item can be selected. If no attribute is
specified, the default is true.

idAttribute = STRING

specify the name of an attribute that can be used to clearly identify items from the model, e.g., a
unique name or a numerical id.

idAsFullPath = BOOL

set this to TRUE or YES if the idAttributes of all parents are needed to clearly identify an item.

idPathSeparator = STRING

if idAsFullPath is set, use this string to separate identifying value of the item and its parents. For
a ItemModel representing the file system, this would ideally be the slash character, leading to a
natural path id.

GUI Controls

119

idSeparator = BOOL

if several items must be specified (in the selectionField), use this string to separate the IDs.

selectionMode = ENUM

the selection model of the control. The following values exist:

• Single - Only one item can be selected

• Extended - A continuous range of items can be selected

• Multi - Several disconnected items can be selected

• NoSelection - No items can be selected

tabDirection = ENUM (default: Vertical)

defines the direction when jumping to the next editable field through the use of the Tab key. When
Horizontal is selected, the cursor automatically switches to the next row when reaching the table
border.

Possible values: Vertical, Horizontal

sortByColumn = INT

specify which column to sort by initially. By default the items are sorted by the value used for the
displayAttribute, but this can be overridden with the sortAttribute. Set this to -1 to disable sorting.

sortAscending = BOOL

specify if sorting should initially be ascending or descending.

header = BOOL

specify if the column headers should be shown.

alternatingRowColors = BOOL

if set to true, use alternating background colors for the rows of the table.

autoExpandAll = BOOL

specify if all items with sub-items should be expanded by default. This takes precedence over
autoExpandToDepth, if both are specified.

autoExpandToDepth = INT

specify the depth to which items should be automatically be expanded. Top-level items have depth
1. If you want to expand all items regardless of depth, you should rather use autoExpandAll

visibleRows = INT

specify how many rows should be visible at least.

editTrigger = STRING

specify what triggers editing of editable cells. This tag can appear multiple times to specify multiple
edit triggers.

The available edit triggers are:

NoEditTriggers

No editing possible.

CurrentChanged

Editing start whenever current item changes.

DoubleClicked

Editing starts when an item is double clicked.

SelectedClicked

Editing starts when clicking on an already selected item.

GUI Controls

120

EditKeyPressed

Editing starts when the platform edit key has been pressed over an item.

AnyKeyPressed

Editing starts when any key is pressed over an item.

AllEditTriggers

Editing starts for all above actions.

editableAttribute = NAME

give the name of an item attribute that specifies if cells should be editable by default. This can be
overridden for single columns.

You can use pseudo attribute names "true/yes" or "false/no" here to enable or disable editing
independent from specific items.

checkboxEditableAttribute = NAME

the same as editableAttribute for columns. You still need to specify a checkboxAttribute in the
columns to display checkboxes.

automaticParentCheckboxState = BOOL

the same as automaticParentCheckboxState for columns.

colorAttribute = NAME

give the name of an item attribute that shall provide the default color for all columns.

Colors can also be provided as strings, either as #rrggbb (hexadecimal notation, e.g., #ff0000), or
as color name as defined in the list of SVG color keyword names.

tooltipAttribute = NAME

same as the tooltipAttribute for columns, but this value applies to all columns.

boldFontAttribute = NAME

same as the boldFontAttribute for columns, but this value applies to all columns.

italicFontAttribute = NAME

same as the italicFontAttribute for columns, but this value applies to all columns.

floatDecimalPlaces = INT

same as the floatDecimalPlaces for columns, but this value applies to all columns.

automaticResize = BOOL

specify if all columns should resize automatically if their content changes. This can be overridden
in single columns.

align = ENUM

specify the default alignment for all columns. Possible values are Left, Right or Center

headerAlign = ENUM

specify the default alignment of the header content for the whole table. Possible values are Left,
Right or Center

DerivedAttribute NAME

Sometimes one wants to change the color of an row depending on some attribute of the item, or
wants to display an icon, but the color or icon should not be a property of the model but of the view.
In this case one can use DerivedAttributes to create a pseudo attribute that depends on another real
(or another derived) attribute. This new derived attribute can be accessed under the name given
after DerivedAttribute.

Derived attributes can be used everywhere where real attributes can be used.

http://www.w3.org/TR/SVG/types.html#ColorKeywords

GUI Controls

121

sourceAttribute = NAME

Give the source attribute to derive the value from.

defaultValue = STRING

Provide a default value if no other case fits.

defaultPathValue = FILE

Provide a default value if no other case fits. File path specific manipulations may occur to provide
the desired result. Only used if defaultValue is not specified.

Case STRING

Specify the value to use if the sourceAttribute has the value given after Case.

value = STRING

Return this value in this case.

pathValue = FILE

Return this value in this case. File path specific manipulations may occur to provide the
desired result.

ComputedAttribute NAME

Computed attributes are another kind of DerivedAttribute where you can specify an expression
instead of a value table.

They can be used everywhere where real attributes can be used.

expression = EXPRESSION

Specify the expression to compute. This is basically a field expression, but instead of field
names you can use every attribute name of the displayed item model or any DerivedAttribute
or ComputedAttribute that has been defined before this one.

Additionally you can use the pseudo attribute "depth" which gives the tree depth of the current
item, with top-level items having the depth 1.

Column STRING

Add a column to the view. The string given after Column will be used as the header string. If not
specified otherwise, it will also be used for for the names of the displayAttribute and editAttribute.

displayAttribute = NAME

Specify the name of the attribute to show as the value of this column cell.

You can specify the pseudo-attribute none if you don't want to have text displayed in this column.

displayAsColor = BOOL

Specify that the attribute specified in displayAttribute (and editAttribute) should be interpreted
as a color and displayed accordingly.

Editing a color is possible and will always produce a string in the format #rrggbb.

editAttribute = NAME

Specify the name of the attribute to use when editing a cell value (if this is different from the
displayAttribute). Note that the editableAttribute must still be set to enable editing for a column
and item.

editableAttribute = NAME

Specify the name of the attribute to decide if the column text should be editable. This might
override the default given on level of the control.

You can use pseudo attribute names "true/yes" or "false/no" here to enable or disable editing
independent from specific items.

GUI Controls

122

checkboxAttribute = NAME

Specify the name of a bool attribute to display a checkbox in this column.

checkboxEditableAttribute = NAME

Specify the name of the attribute to decide if the checkbox should be editable. This might
override the default given on level of the control.

You can use pseudo attribute names "true/yes" or "false/no" here to enable or disable editing
independent from specific items.

automaticParentCheckboxState = BOOL

Parent items show the cumulative check box state of all their children with check boxes, and
may sport a "partially checked" state. (The checkbox is only shown if the checkboxAttribute is
defined for the parent item, regardless of its value.)

If there are no direct child items with check boxes in this column, the check box state is
determined by the value given through the checkboxAttribute.

iconAttribute = NAME

Specify the name of a attribute that contains an image or the file path of an image to display
a icon in this column.

Note: For many use cases this might be a DerivedAttribute. If a filename is chosen for the icon,
then "pathValue" should be set instead of "value" in the derived attribute.

tooltipAttribute = NAME

Specify the name of a attribute that contains the text that is used to display tooltips in this column.

Note: For many use cases this might be a DerivedAttribute.

colorAttribute = NAME

Specify the name of a attribute that contains a color or color name to change the text color in
this column. This will override the colorAttribute specified on the control level.

Note: For many use cases this might be a DerivedAttribute.

sortAttributes = STRING

Specify the names of attribute to sort the items by when this column is selected for sorting.
Several attributes may be specified (separated by comma) if values of single attributes may be
the same. First attribute take precedence over later attributes. Sort order for certain attributes
may be inverted by prepending a "!" before the attribute name.

Note: Attributes used for sorting don't necessarily need to be used for display.

comboboxAttribute = NAME

Specify an attribute that contains the items of a combobox that will be used for editing string
values. Use this if you only want to allow certain values while editing. If your list of possible
items is static for the whole column, you can define a DerivedAttribute with only a defaultValue
and use that.

Note: You still need to set the editableAttribute to allow editing.

Note: An empty list of items will allow free editing.

comboboxTooltipsAttribute = NAME

Specify an attribute that contains the items of tooltips for the combobox items specified via the
comboboxAttribute. will be used for editing string values. If your list of possible items is static
for the whole column, you can define a DerivedAttribute with only a defaultValue and use that.

Note: Only useful in combination with comboboxAttribute. Make sure both strings contain the
same amount of values.

GUI Controls

123

comboboxItemDelimiter = STRING

Specify the character (or a whole string) that separates items in the comboboxAttribute and
comboboxTooltipsAttribute. The default is the | character.

boldFontAttribute = NAME

Specify an attribute that evaluates to true or false. If this is true for an item, the displayed text
is shown with a bold font.

italicFontAttribute = NAME

Specify an attribute that evaluates to true or false. If this is true for an item, the displayed text
is shown with an italic font.

visibleOn = FIELDEXPRESSION

Same meaning as with visibleOn tag of a control, but applied on the column.

floatDecimalPlaces = INT

Specify the number of digits after the decimal point to show for floating-point numbers. -1 means
show all (relevant) digits, possibly selecting scientific notation.

automaticResize = BOOL

Specify if this column should resize automatically if the content of the column changes. This
overrides the value given on the control level.

align = BOOL

Specify the alignment of text in this column. Possible values are Left, Right or Center. This
overrides the value given on the control level.

headerAlign = BOOL

Specify the alignment of text in the header of this column. Possible values are Left, Right or
Center. This overrides the value given on the control level.

For detailed examples, have a look at the FileSystemItemModelData and FileSystemItemModelView
modules which demonstrate some of the possibilities of this control. This example is taken from
FileSystemItemModelView:

 ItemModelView input {
 selectionField = selection
 idAttribute = name
 idAsFullPath = true
 idPathSeparator = "/"
 idSeparator = ";"
 sortByColumn = 0

 DerivedAttribute "icon" {
 sourceAttribute = directory
 case "1" {
 pathValue = "$(MLAB_MeVisLab_IDE)/Modules/IDE/images/fileopen.png"
 }
 }

 Column "name" {
 sortAttributes = "!directory,name_nocase"
 iconAttribute = icon
 }
 Column "size" {
 align = right
 }
 Column "writable" {
 displayAttribute = none
 checkBoxAttribute = writable
 checkBoxEditableAttribute = true
 }
 }

Also have a look at MLStandardItemModelWrapper for a way to generate your own item model from
scripting.

GUI Controls

124

ItemModelView is derived from Control.

4.8. Event Handling Controls

4.8.1. Accel

Accel allows to add keyboard shortcuts that trigger fields or execute a Python command when pressed.
They are local to the window they are declared in, thus they are only triggered when their parent window
is active.

Accel can appear inside of all Group GUI controls. The field and command tags are both optional. Note
that Accel should be stated before the other GUI controls for which the defined shortcuts should be
available. I.e., if a certain shortcut should be available for a whole window, state the according Accel
statement right at the beginning, just after the Window statement.

Dynamic scripting: MLABAccelControl

Accel {
 key = KEYSEQUENCE
 field = FIELD
 command = SCRIPT
}

key = KEYSEQUENCE

defines a shortcut that triggers the accelerator, e.g., CTRL+X, ALT+Z, CTRL+SHIFT+U.

field = FIELD

defines a trigger field that is touched when the keyboard shortcut is pressed.

command = SCRIPT

defines a script command that is called when the keyboard shortcut is pressed.

4.8.2. EventFilter

The EventFilter is a non-GUI control that can be placed anywhere in the GUI. It allows to listen to the
events that other controls (and optionally their children) receive and can then either prevent the event
from being delivered or just pass through the event. It is a very powerful control since it allows to react on
GUI events on a low level. You can, e.g., use it to teach other controls drag-and-drop features, to notice
when a window gets visible/hidden or when a control gets entered with the mouse and much more.

Dynamic scripting: MLABEventFilterControl

EventFilter {
 name = NAME
 command = SCRIPT
 filter = NAMELIST
 eatEvent = BOOL [No]
 children = BOOL [No]
 debug = BOOL [No]
 control = NAME
 ...
}

name = NAME

sets the name of the EventFilter, for usage with ctx.control() method.

command = SCRIPT (arguments: eventPropertyMap [, control, QEvent])

defines a script command that is called for each event that matched the filter. For details on the event
properties, see below. The optional control parameter can be used to directly access the EventFilter
control. The optional QEvent parameter allows to directly access the Qt event for advanced usage.
Make sure to import PythonQt.QtGui in your Python code if you want to access the QEvent directly.

GUI Controls

125

filter = NAMELIST

a list of event names that should be filtered.

eatEvent = BOOL (default: No)

sets whether the filtered events are eaten automatically (=not delivered).

children = BOOL (default: No)

sets whether the filter is applied to all subwidgets or just to the given controls.

debug = BOOL (default: No)

sets whether all events are printed to the console (just to see which events happen and which you
might be interested in).

control = NAME

sets the name of the control to filter events on. This tag can appear multiple times so that the filter
listens to multiple controls at a time.

The filter can contain a number of Event names. These names are take from Qt. You can find the event
details at http://doc.qt.io/qt-5/qevent.html.

All events share the type property, which can be checked if multiple events are filtered. To print all
properties of an event, just print the passed event property map in Python.

The most useful events are:

MouseButtonPress, MouseButtonRelease, MouseButtonDblClick, MouseMove

react on mouse button press or release and movement.

Event properties: x, y, globalX, globalY, button (one of "left","mid","right"), ctrlKey, shiftKey, altKey

Show, Hide

reacts on a control being shown or hidden.

Event properties: none (except type)

Enter, Leave

reacts on mouse entering or leaving the control area.

Event properties: none (except type)

DragEnter, DragMove, Drop

handles drag-and-drop on a low level.

Event properties: x, y, globalX, globalY

Wheel

handles the mouse wheel event.

Event properties: x, y, globalX, globalY, delta, orientation (one of "vertical","horizontal"), ctrlKey,
shiftKey, altKey

Resize

handles resize event.

Event properties: width, height, oldWidth, oldHeight

KeyPress, KeyRelease

handles the key press event, where "ascii" is the ascii char, the text is unicode and the key can be
used to access special keys, e.g., "Left", "Right" for cursor keys. See the Qt key defines or have a
look at the example in TestEventFilter.

Event properties: ascii, text, key, ctrlKey, shiftKey, altKey

http://doc.qt.io/qt-5/qevent.html

GUI Controls

126

Example 4.29. EventFilter

Have a look at the module TestEventFilter. This module features the reacting of certain areas of the
GUI on defined mouse actions (button pressed, entered/leave, etc.) and the implementation of dragging
and dropping of files or images.

Figure 4.20. TestEventFilter Module

4.9. Other Design Options
This chapter explains other options used in many GUI controls: the layout engine, rich text, and the
MDL styles.

4.9.1. Align Groups
By default, various GUI Controls are laid out depending on each other, e.g., Field controls in a Vertical
automatically get the same label size. This behavior can explicitly be specified by the concept of "Align
Groups". A group is specified by its unique name, which you have to choose. All controls which are in
the same group are aligned in respect to the type of the group.

There are three type of groups (given by their tag names):

• alignGroupX (alias: alignGroup) - all child widgets of the control get the maximum width of all child
widgets in that column.

• alignGroupY - all child widgets of the controls get the maximum height of all child widgets in that row.

• labelAlignGroup - all controls get the same maximum label size.

In simpler words: if two controls, e.g., Fields in the same Vertical, have the same alignGroup tag, all
the subwidgets in the Field controls are aligned well in their widths.

The labelAlignGroup can be used to just align the labels, so that the other children of a Control will not
be aligned. Have a look at the TestLayouter MacroModule in MeVisLab, which shows the differences.

Important

Please note that the term "alignment" in this section might be misleading. In this context,
alignment means getting the same width or height as another control. This does not
necessarily mean a visual alignment, since the controls may be located at completely

GUI Controls

127

different positions. Also note that the alignment is a one-time process when the window
is created, so it might get unaligned if you allow expanding of the controls via expandX,
expandY.

In addition to the above tags, which are used directly inside of a control that should be aligned, you can
also use the childAlignGroupX (alias childAlignGroup) and childAlignGroupY tags, which can be
specified in any control that has children. This causes all "simple" controls inside this control to get the
specified align group. So you can just see it as a helper tag that helps you write less tags:

Vertical {
 childAlignGroup = group1
 Box {
 Field test1 { }
 Field test2 { }
 }
 Box {
 Field test3 { }
 Field test4 { }
 }
}

This is identical to the following, note that the boxes do not get the alignGroup and that the
childAlignGroup tag works recursively.

Vertical {
 Box {
 Field test1 { alignGroup = group1 }
 Field test2 { alignGroup = group1 }
 }
 Box {
 Field test3 { alignGroup = group1 }
 Field test4 { alignGroup = group1 }
 }
}

The labelAlignGroup tag can also be used at a higher level and it causes all "simple" controls to get their
labels aligned. See the TestLayouter MacroModule in MeVisLab for an example of the above tags.

4.9.2. RichText
The following tabels give you an overview of which tags are available in RichText. The RichText can be
used in tooltips, whatsthis boxes, Label, HyperText, HyperLabel and various other places. The syntax
is a simple subset of HTML, including lists, tables, images and links. Have a look at the TestHyperText
module in MeVisLab to see some examples.

Table tags Notes

<table>...</table> A table. Tables support the following attributes:

• bgcolor -- The background color.

• width -- The table width. This is either an absolute pixel width or a relative
percentage of the table's width, for example width=80%.

• border -- The width of the table border. The default is 0 (= no border).

• cellspacing -- Additional space around the table cells. The default is 2.

• cellpadding -- Additional space around the contents of table cells. The
default is 1.

<tr>...</tr> A table row. This is only valid within a table. Rows support the following
attribute:

• bgcolor -- The background color.

<th>...</th> A table header cell. Similar to td, but defaults to center alignment and a bold
font.

GUI Controls

128

Table tags Notes

<td>...</td> A table data cell. This is only valid within a table row. Cells support the
following attributes:

• bgcolor -- The background color.

• width -- The cell width. This is either an absolute pixel width or a relative
percentage of table's width, for example width=50%.

• colspan -- Specifies how many columns this cell spans. The default is 1.

• rowspan -- Specifies how many rows this cell spans. The default is 1.

• align -- Alignment; possible values are left, right, and center. The
default is left.

• valign -- Vertical alignment; possible values are Top, Middle and Bottom.
The default is Middle.

Special tags Notes

 An image. The image name for the mime source factory is given in the source
attribute, for example . The image tag also understands
the attributes width and height that determine the size of the image. If the
pixmap does not fit the specified size it will be scaled automatically The
align attribute determines where the image is placed. By default, an image
is placed inline just like a normal character. Specify left or right to place the
image at the respective side.

<hr> A horizontal line.

 A line break.

<nobr>...</nobr> No break. Prevents word wrap.

Style tags Notes

... Emphasized. By default this is the same as <i>...</i> (italic).

... Strong. By default this is the same as ... (bold).

<i>...</i> Italic font style.

... Bold font style.

<u>...</u> Underlined font style.

<s>...</s> Strike out font style.

<big>...</big> A larger font size.

<small>...</small> A smaller font size.

<code>...</code> Indicates code. By default this is the same as <tt>...</tt> (typewriter). For
larger chunks of code, use the block-tag <pre>.

<tt>...</tt> Typewriter font style.

... Customize the font size, family and text color. The tag can have the following
attributes:

• color -- The text color, for example color="red" or color="#FF0000".

• size -- The logical size of the font. Logical sizes 1 to 7 are supported. The
value may either be absolute (for example, size=3) or relative (size=-2).
In the latter case the sizes are simply added.

• face -- The family of the font, for example face="times".

GUI Controls

129

Anchor tags Notes

<a>... An anchor or link.

• A link is created by using an href attribute, for example Link Text. Links to targets within a
document are written in the same way as for HTML, e.g., Link Text.

• A target is created by using a name attribute, for example 9<h2>Sub Title</h2>.

Structuring tags Notes

<qt>...</qt> A Qt rich text document. It can have the following attributes:

• title -- The caption of the document.

• type -- The type of the document. The default type is "page". It indicates
that the document is displayed in a page of its own. Another style is
"detail", which can be used to explain certain expressions in more detail
in a few sentences. Note that links will not work in documents with <qt
type="detail">...</qt>.

• bgcolor -- The background color, for example bgcolor="yellow" or
bgcolor="#0000FF".

• background -- The background pixmap, for example
background="granite.xpm". The pixmap name needs to have an
absolute path, e.g., use $(LOCAL)/image.png.

• text -- The default text color, for example text="red".

• link -- The link color, for example link="green".

<h1>...</h1> A top-level heading.

<h2>...</h2> A sublevel heading.

<h3>...</h3> A sub-sublevel heading.

<p>...</p> A left-aligned paragraph. Adjust the alignment with the align attribute.
Possible values are left, right and center.

<center>...</center> A centered paragraph.

<blockquote>...</

blockquote>

An indented paragraph that is useful for quotes.

... An unordered list. You can also pass a type argument to define the bullet
style. The default is type="disc"; other types are circle and square.

... An ordered list. You can also pass a type argument to define the enumeration
label style. The default is type="1"; other types are "a" and "A".

... A list item. This tag can be used only within the context of or .

<pre>...</pre> For larger chunks of code. Whitespaces in the contents are preserved. For
small bits of code, use the inline-style code.

4.9.3. Styles

Styles can be defined globally but also locally in a user interface to change the GUI appearance. Every
control supports the style tag, where you can give a style by its name (declared with DefineStyle) or
by just opening a local style and deriving from the current style.

GUI Controls

130

Example: See TestStyles macro module in MeVisLab.

Figure 4.21. TestStyles Module

4.9.3.1. DefineStyle

DefineStyle allows to define a new GUI style, either complete or just extending an existing style. The style
provided with MeVisLab is called "default". Old ILAB4 styles are also supported, being defaultVerySmall,
defaultSmall, defaultBig, defaultHuge. These styles should no longer be used and are replaced by the
scale tag, with which you can resize all fonts in a GUI control by just giving the scale tag and a positive
or negative integer for bigger/smaller fonts and spacings.

Styles can be used to change the whole user interface appearance or just to change a single color/font
in a given control. See below for an example on how to do that.

A style contains Fonts, Colors and Prototypes. You can specify a different font for each of the following
roles:

• Titles (titleFont tag)

• Editable text (editFont tag)

• TabBar text (tabFont tag)

• Box group titles (boxFont tag)

There are two different sets of colors, the default colors and the disabledColors specifies which
colors a control uses when it is drawn. The disabledColors are used when a control is not enabled (also
called "grayed out").

DefineStyle NAME {
 derive = NAME

 // font for titles in the GUI (Buttons, Labels, etc.)
 titleFont {
 family = NAME
 size = INT
 weight = ENUM
 italic = BOOL
 fixedPitch = BOOL
 }

 // font for editing components in the GUI (NumberEdit, TextView, ...)
 editFont {
 // see titleFont
 }

 // font for TabViews
 tabFont {
 // see titleFont
 }

GUI Controls

131

 // font for Box group titles
 boxFont {
 // see titleFont
 }

 colors {
 fg = COLOR
 bg = COLOR
 button = COLOR
 buttonText = COLOR
 editText = COLOR
 editBg = COLOR
 base = COLOR
 alternateBase = COLOR
 light = COLOR
 midlight = COLOR
 dark = COLOR
 mid = COLOR
 shadow = COLOR
 highlight = COLOR
 highlightedText = COLOR
 brightText = COLOR
 link = COLOR
 linkVisited = COLOR
 boxText = COLOR
 tabText = COLOR
 toolTipBase = COLOR
 toolTipText = COLOR
 }
 disabledColors {
 // same as above colors
 }
}

derive = NAME

select a style to derive from, all attributes are copied and you may overwrite any of the tags, e.g.,
just the font sizes, an individual color.

titleFont, editFont, boxFont, tabFont

defines properties of a font (you do not need to specify all tags, reasonable defaults are taken from
the underlying system settings.

family = NAME

specify a font family name; possible names are: Helvetica, Courier, etc.

size = INT

set the point size of the font.

weight = ENUM

set the weight of the font.

Possible values: Light, Normal, DemiBold, Bold, Black

italic = BOOL

set if font should be italic.

fixedPitch = BOOL

set if the font should be fixed pitch (depends on font family).

colors, disabledColors

define the normal colors and the disabled colors for all controls in this style.

The syntax for COLOR in the style is:

colorname[:imagefilename]

where colorname can be one of:

• #rrggbb

GUI Controls

132

• X11 color name (also on Windows)

• name specified in Colors section

and imagefilename can be an extra image used as brush for that color. Using images is especially
interesting for the background colors bg, editBg and button.

Examples:

bg = black:$(LOCAL)/someBackgroundImage.png

editBg = white

fg = COLOR

foregound text color used in Labels etc.

Aliases: foreground, windowText

bg = COLOR

background color.

Aliases: background, window

button = COLOR

background color of buttons.

buttonText = COLOR

text color on buttons.

editText = COLOReditBg = COLOR

color for editable text and background for text edits and list views.

base = COLOR

same as editBg.

alternateBase = COLOR

defines the alternate background color for ItemModelViews that have the alternatingRowColors
attribute set.

light = COLOR midlight = COLOR dark = COLOR mid = COLOR shadow = COLOR

colors used for drawing sunken and raised panels and buttons.

highlight = COLOR highlightedText = COLOR

highlight background and text color, e.g., for text selection and ListViews.

brightText = COLOR

text with good contrast to "dark" color.

link = COLOR linkVisited = COLOR

color used for drawing links and visited links (in RichText).

boxText = COLOR

color of box titles.

tabColor = COLOR

color of TabBar titles.

toolTipBase = COLORtoolTipText = COLOR

background and text color of tool tips.

133

Chapter 5. Translations
MeVisLab supports translations by using the internationalization framework of Qt.

Modules that use translations must have the tag hasTranslation set to true. The languages for the
translations must be declared using the translationLanguages tag. It is also possible to provide the
names of other modules that will also be translated: translationModules.

Strings to translate are taken from MDL tags and from occurrences of ctx.translate() in Python scripts of
the translated modules (please only use direct strings as argument for ctx.translate, no expressions or
variables). Panels of other modules that are incorporated into the GUI of referenced modules through
the Panel control will also automatically be searched for translatable strings.

After changing the MDL scripts and Python code, it is necessary to create the translation files (*.ts).

This is done from the context menu of the MeVisLab module: Translations → Create/Update. The
translation files can then be edited with the Qt Linguist tool which is available through Translations

→ Edit.

The translation files must be compiled into run-time translation files (*.qm) before they can be used. This

can be done with the Qt Linguist tool from the main menu: File → Release. This step is not necessary
when building standalone applications, because MeVisLab will then automatically compile the *.ts files
to *.qm files. The *.qm files will be included in the installer.

Usually the operating system localization will determine which language is chosen. To force MeVisLab
to select a different language, it is possible to provide the preferences variable Locale, e.g., to en_EN.

For testing this can also be achieved by selecting Translations → Set Language And Reload and
then selecting the desired language value.

http://doc.qt.io/qt-5/internationalization.html
http://doc.qt.io/qt-5/qtlinguist-index.html

134

Chapter 6. Test Cases

The MDL syntax for defining test cases is explained in the Test Center Reference.

135

Index
M
MDL Tags

All
accel, 70, 71, 78, 105
acceptDrops, 44
acceptWheelEvents, 60, 66, 80, 84
activatedCommand, 80
activeInputIndex, 19
activeOffImage, 70, 72, 74, 78
activeOnImage, 70, 72, 74, 78
activeOutputIndex, 19
align, 120, 123
alignGroup, 42, 66, 126
alignGroup), 126
alignGroupX, 42, 126
alignGroupY, 42, 126
alignTitle, 57
alignX, 42
alignX/Y, 49, 52
alignY, 42
allowedTypes, 22
allowLinks, 101
allowPopups, 116
allowRenaming, 98
alternateBase, 132
alternatingRowColors, 119
application, 112
applyButton, 67, 85
arrangement, 99
associatedTests, 18
author, 16, 18
autoApply, 90
autoArrange, 98
autoComplete, 80
autoExpandAll, 119
autoExpandToDepth, 119
automaticParentCheckboxState, 120, 122
automaticResize, 120, 123
autoPageStep, 87
autoRaise, 71, 71
autoRaiseButtons, 76
autoRepeat, 70, 71
autoResize, 102
autoScale, 71, 77
autoScaleIcons, 75, 76
autoSize, 63, 108
autoStart, 112
backgroundColor, 109
base, 132
bg, 43, 132
bgMode, 43
boldFontAttribute, 120, 123
border, 70, 73, 77
borderless, 46

boxFont, 131
boxText, 132
brightText, 132
browseButton, 67
browseFilter, 67
browseMode, 67
browseSelectedCommand, 67
browseTitle, 67
browsingGroup, 67
buddy, 101
Button, 32
button, 43, 132
buttonBgMode, 43
buttonClickedCommand, 73
buttonPressedCommand, 73
buttonReleasedCommand, 73
buttonText, 132
callLater, 32
canGoFullscreen, 46
Case, 121
caseSensitiveAutoComplete, 66, 80
cd, 110
cellSpacing, 96
centerField, 88
checkable, 58
checkableButtons, 75, 76
checkboxAttribute, 122
checkboxEditableAttribute, 120, 122
checked, 58, 79, 106
checkedField, 57
checkList, 96
checkListItemChangedCommand, 97
childAlignGroup, 42, 127
childAlignGroupX, 42, 127
childAlignGroupY, 42, 127
children, 125
childrenCollapsible, 55
class, 29, 30
clickedColumnField, 118
clickedCommand, 97, 99
clone, 109
color, 33, 55
colorAttribute, 120, 122
colors, 130
colors disabledColors, 131
colspan, 37, 43, 49
Column, 121
columnSeparator, 95
comboBox, 66
comboboxAttribute, 122
comboboxItemDelimiter, 123
comboboxTooltipsAttribute, 122
comboCompletes, 66
comboEditable, 66
comboField, 66, 66, 80, 80, 81
comboItems, 66, 66
comboSeparator, 66, 80

Index

136

command, 31, 31, 33, 69, 70, 71, 72, 74, 92,
105, 124, 124
comment, 9, 17, 18, 21, 23
componentTitles, 66, 85
ComputedAttribute, 121
console, 90
contentFile, 108, 113, 115
contentString, 113, 115
contentStringBaseUrl, 114, 115
contentUrl, 113, 115
contextMenu, 94, 96, 99, 105, 111
contextMenuOnEmptyList, 94, 97, 99, 111
contextMenuRequestedCommand, 97
control, 125
currentChangedCommand, 94, 97, 99
currentField, 118
currentIndexField, 60
dark, 132
dblClickedCommand, 112
debug, 125
defaultPathValue, 121
defaultValue, 121
delay, 109
deletionRequestedCommand, 112
dependsOn, 22, 24, 33, 40, 74, 105
deprecatedName, 9, 18, 22, 23, 24
derive, 131
DerivedAttribute, 120
destroyedCommand, 44
direction, 55, 77, 87, 88, 89, 102
directory, 28
disabledColors, 130
disabledOffImage, 70, 72, 74, 78
disabledOnImage, 70, 72, 74, 78
displayAsColor, 121
displayAttribute, 121
DLL, 9, 28, 29, 30
documentation, 17
doubleClickedCommand, 94, 97, 99
doubleClickedField, 118
droppedFileCommand, 26, 43
droppedFilesCommand, 26, 43
droppedObjectCommand, 43
duplicatesEnabled, 80
eatEvent, 125
edit, 65, 85, 90, 90
editable, 21, 24, 79, 80, 86
editableAttribute, 120, 121
editAlign, 66, 84, 85
editAttribute, 121
editBg, 43, 132
editBgMode, 43
editField, 65
editFont, 131
editMode, 82
editText, 132
editTrigger, 119
enableCalenderPopup, 86

enableContextMenu, 112
enabled, 40, 65, 74, 79, 105
enableEmbeddedMDL, 116
enablePlugins, 116
enablePrinting, 114
enableScriptingObjects, 116
enumAutoFormat, 66, 78, 80
equalButtonHeights, 73
equalButtonWidths, 73
exampleNetwork, 18
excludeFilter, 111
exclusiveButtons, 73
expandX, 39, 49, 102, 127
expandX/Y, 49, 52, 54
expandY, 40, 48, 102, 127
exportedWindow, 19
expression, 121
Extended, 94
externalDefinition, 18, 30, 30
family, 131
fg, 132
field, 9, 105, 124
fieldDragging, 68, 70, 79, 91
FieldListener, 26
fields, 27
file, 28
fileDialogCreatesUnexpandedFilenames, 67
fileExtension, 111
filename, 112
filter, 9, 9, 125
finalizeCommand, 26
fixedHeight, 41
fixedPitch, 131
fixedWidth, 41
flatButtons, 75
floatDecimalPlaces, 120, 123
format, 65, 84, 85, 86, 87
frameLineWidth, 44
frameMidLineWidth, 44
frameShadow, 44
frameShape, 44
fullscreen, 46
fw, 41
genre, 9, 16, 34
Genre, 34
globalStop, 70, 72
group, 9, 17, 35
h, 41
hasGroupInputs, 30
hasTranslation, 18
hasViewer, 30
header, 96, 119
headerAlign, 120, 123
headerTitles, 95
height, 41
hidden, 21, 24
hideCommand, 104, 105
hierarchy, 111

Index

137

highlight, 132
highlightedText, 132
hintText, 65, 82
hiResRendering, 108
hscroller, 59, 90
HSpacer, 102
html_class, 39
html_style, 39
html_styleField, 39
hybridMLModule, 30
icon, 106
iconAttribute, 122
iconHeight, 75, 76
iconWidth, 75, 76
idAsFullPath, 118
idAttribute, 118
idPathSeparator, 118
idSeparator, 119
image, 67, 70, 71, 74, 78, 79, 81, 101, 102
importPath, 26
includeFilter, 111
indent, 101
info, 32
init, 31
initCommand, 25, 25, 26, 44
inlineDrawing, 72
inlineWidgetsMargin, 83
inlineWidgetsSpacing, 83
insertPolicy, 80
internalName, 20, 22, 22
isFilePath, 22, 24
italic, 131
italicFontAttribute, 120, 123
item, 9, 22, 24, 66, 78, 81
itemActivatedCommand, 105
itemCollapsedCommand, 97
itemExpandedCommand, 97
itemRenamedCommand, 97, 99
items, 22, 23, 24, 74, 77, 78, 81
itemTextPos, 99
javaScriptInitCommand, 116
key, 124
keywords, 18
labelAlignGroup, 42, 126
layout, 57, 57, 59, 95
leftInlineWidgets, 83
legacyValue, 21, 23
library, 28
light, 132
link, 132
linkActivatedCommand, 102
linkClickedCommand, 114, 116
linkDelegation, 114, 116
linkHoveredCommand, 101
linkVisited, 132
listenField, 31, 31
loadFinishedCommand, 114, 115
loadProgressCommand, 114, 115

loadStartedCommand, 114, 115
lostFocusCommand, 83
lowerField, 88
margin, 48, 49, 50, 52, 57, 73
max, 22, 24
maxCount, 80
maximized, 46
maximumHeight, 41
maximumWidth, 41
maxItemWidth, 99
maxLength, 82
maxTextLength, 99
maxw, 41
menuBar, 105
mh, 41
mid, 132
midlight, 132
min, 22, 24
minimumHeight, 41
minimumWidth, 41
minLength, 65, 82, 84, 85, 110, 111
mode, 60, 82, 86
module, 9, 28, 107
Module, 27
moduleItemCreatedCommand, 26
moreButton, 67
mouseButtonClickedCommand, 97
Multi, 94
mw, 41
name, 9, 38, 45, 104, 105, 105, 108, 124
normalOffImage, 70, 72, 74, 78
normalOnImage, 70, 72, 74, 78
NoSelection, 94
objectWrapper, 28
onlyOneInstance, 31
orientation, 74, 103
pageStep, 87, 87
panel, 9, 107, 107, 107, 107
Panel, 107
panelByGroupTitle, 107, 107, 107
panelName, 39, 107, 107, 107
pathDblClickedCommand, 110
pathSelectedCommand, 110
pathValue, 121
persistent, 21, 24
ph, 41
popup, 109
popupDelay, 72
popupMenu, 70, 72, 109
popupMode, 72
preferredHeight, 41
preferredWidth, 41
preloadDLL, 28
prepareEditCommand, 97
pressedCommand, 100
pressedIndicatorField, 65, 87, 88, 89
priority, 21, 24
project, 111

Index

138

projectSource, 29, 30
pw, 41
ratio, 89
receiver, 106
recursive, 111
relatedFile, 19
remoteBaseHandler, 28
removed, 24
resizeCommand, 44
resizeMode, 99
restoredFromUndoHistoryCommand, 26
returnPressedCommand, 83, 94, 97, 99
richText, 95, 96
rightButtonClickedCommand, 100
rightButtonPressedCommand, 100
rightInlineWidgets, 83
root, 110, 110
rootDir, 111
rootIsDecorated, 96
rotationMode, 89
Row, 50
rowSeparator, 93, 95
runApplicationCommand, 26
scale, 41, 130
scaleFactor, 102
scaleIconSetToMinSize, 71
scriptExtension, 28
scriptOnly, 30, 30
seeAlso, 18
selectable, 101
selectableAttribute, 118
selectedCommand, 94, 99, 112
selectionChangedCommand, 94, 97, 99,
114, 116
selectionField, 118
selectionMode, 93, 96, 99, 119
shadow, 55, 132
shouldCloseCommand, 46
show, 77, 77
showButtonNames, 74
showCommand, 104, 105
showControls, 112
showDicomFiles, 111
showIconsOnly, 74
showItemInternals, 77
showLineNumbers, 91
showStepButtons, 84
Single, 93
size, 131
slider, 65
sliderSnap, 65
slot, 106
snap, 87, 88, 89
sortAscending, 96, 119
sortAttributes, 122
sortBy, 110
sortByColumn, 96, 119
source, 25, 25, 45

sourceAttribute, 121
SpacerX, 102
SpacerY, 102
spacing, 48, 49, 50, 52, 67, 74, 77, 85, 99
status, 16
step, 65, 84, 88
stepstep, 65, 84
storingToUndoHistoryCommand, 26
stretchX, 40, 49
stretchX/Y, 49, 52, 54
stretchY, 40, 48
stripEnumItemPrefix, 74
strips, 74, 77
style, 38, 129
styleSheetFile, 38
styleSheetString, 38
sunkenVectorLabels, 66, 85
symbol, 32
syntaxHighlighting, 91
tabColor, 132
tabDependsOn, 63
tabDeselectedCommand, 63
tabDirection, 96, 119
tabEnabled, 63
tabFont, 131
tabHierarchy, 63
tabIcon, 62
tabInitial, 63
tabSelectedCommand, 63
tabStopWidth, 90
tabTitle, 62
tabTooltip, 63
text, 90, 91
textAlign, 66
textAlignment, 82, 101
textChangedCommand, 80, 83
textField, 91
textFile, 92
textFormat, 90, 101
textPosition, 71
textVisible, 103
textWrap, 101
tickmarks, 87
title, 9, 22, 45, 57, 64, 64, 67, 68, 69, 71, 74,
74, 77, 78, 79, 81, 90, 93, 101
titleField, 57, 65, 68, 69, 71, 93, 101
titleFile, 93
titleFont, 131
toggledCommand, 79
toggleField, 96
toolTip, 9
tooltip, 42, 74, 78
tooltipAttribute, 120, 122
toolTipBase, 132
tooltipField, 42
toolTipText, 132
tracking, 87, 88, 89
translationLanguages, 18

Index

139

translationModules, 18
trim, 65, 83, 101
type, 20, 22, 22, 108, 109
updateDelay, 96
updateFieldWhileEditing, 65, 82
upperField, 88
urlChangedCommand, 114
useOriginalIconSizes, 75, 76
UserGenres, 34
useSheet, 67
validator, 65, 80, 83
value, 20, 23, 82, 121
values, 23, 93, 93, 95, 95, 109
Viewer, 109
viewing, 108
visible, 40, 74
visibleOn, 22, 24, 33, 40, 74, 105, 123
visibleRows, 91, 93, 96, 110, 111, 119
vscroller, 59, 90
VSpacer, 102
w, 41
w/h, 63
wakeupCommand, 25, 25, 26, 45
weight, 131
whatsThis, 9, 42, 74, 78, 105
widgetControl, 28
widgetName, 39
width, 41
widthField, 88
window, 107
Window, 107
windowActivatedCommand, 46
withMilliSeconds, 86
wordWrap, 99
wrap, 68, 84, 90
wrapColumn, 90
wrapsAround, 89
x, 42, 43, 52, 52
x/y, 52, 63
x2, 43, 43, 52
y, 42, 52, 52
y2, 43, 52

Complex
Accel, 124
Box, 57
Button, 68
ButtonBar, 76
ButtonBox, 54
Category, 47
CheckBox, 78
ColorEdit, 81
ComboBox, 79
Commands, 24
CommonButtonGroup, 72
Control, 37
DateTime, 86
DefineStyle, 130
Deployment, 27

Description, 23
DicomBrowser, 110
DynamicFrame, 107
Empty, 102
EventFilter, 124
Execute, 45
Field, 64
FieldLabel, 68
FieldListener, 31
Frame, 44
FreeFloat, 63
GraphicsView, 116
Grid, 52
Horizontal, 48
HyperLabel, 92
HyperText, 91
IconView, 98
Image, 102
Interface, 19
IntervalSlider, 87
InventorModule, 29
ItemModelView, 117
Label, 100
LineEdit, 82
ListBox, 93
ListView, 94
MacroModule, 30
MenuBar, 81
MenuItem, 105
MLModule, 29
MoviePlayer, 112
NetworkPanel, 32
NumberEdit, 83
Panel, 106
PathBrowser, 109
Persistence, 27
PopupMenu, 104
PreloadDLL, 35
ProgressBar, 103
PushButtonGroup, 75
RadioButtonGroup, 75
ScreenshotGallery, 112
ScrollView, 58
Separator, 102
Slider, 86
Splitter, 54
SubMenu, 104
Table, 49
TabView, 59
TabViewItem, 62
TextView, 89
ThumbWheel, 88
ToolButton, 70
ToolButtonGroup, 76
VectorEdit, 84
Vertical, 48
Viewer, 108
WebEngineView, 112

Index

140

WebView, 114
Window, 45

	MeVisLab Definition Language (MDL) Reference
	Table of Contents
	Chapter 1. MDL Syntax
	1.1. Tags and Values
	1.2. Tag Data Types
	1.3. Groups
	1.4. Variables
	1.5. Including Files
	1.6. Conditions and Special Statements
	1.7. Comments
	1.8. Naming Conventions and Limitations
	1.9. Validation

	Chapter 2. Module (Abstract) Declaration
	2.1. Interface
	2.2. Description
	2.3. Commands
	2.4. Persistence
	2.5. Deployment
	2.6. MLModule
	2.7. InventorModule
	2.8. MacroModule
	2.9. FieldListener
	2.10. NetworkPanel

	Chapter 3. Other Module-Related MDL Features
	3.1. Module Genre Definition
	3.2. ModuleGroup Definition
	3.3. Preloading DLLs

	Chapter 4. GUI Controls
	4.1. GUI Example Modules in MeVisLab
	4.2. Abstract GUI Controls
	4.2.1. Control (Abstract)
	4.2.2. Frame (Abstract)
	4.2.3. Execute

	4.3. Layout Group Controls
	4.3.1. Window
	4.3.2. Category
	4.3.3. Vertical
	4.3.4. Horizontal
	4.3.5. Table
	4.3.6. Grid
	4.3.7. ButtonBox
	4.3.8. Splitter
	4.3.9. Box
	4.3.10. ScrollView
	4.3.11. TabView
	4.3.11.1. TabViewItem

	4.3.12. FreeFloat

	4.4. User Input GUI Controls
	4.4.1. Field
	4.4.2. FieldLabel
	4.4.3. Button
	4.4.4. ToolButton
	4.4.5. CommonButtonGroup
	4.4.6. PushButtonGroup
	4.4.7. RadioButtonGroup
	4.4.8. ToolButtonGroup
	4.4.9. ButtonBar
	4.4.10. CheckBox
	4.4.11. ComboBox
	4.4.12. MenuBar
	4.4.13. ColorEdit
	4.4.14. LineEdit
	4.4.15. NumberEdit
	4.4.16. VectorEdit
	4.4.17. DateTime
	4.4.18. Slider
	4.4.19. IntervalSlider
	4.4.20. ThumbWheel
	4.4.21. TextView
	4.4.22. HyperText
	4.4.23. HyperLabel
	4.4.24. ListBox
	4.4.25. ListView
	4.4.26. IconView

	4.5. Decoration GUI Controls
	4.5.1. Label
	4.5.2. Image
	4.5.3. Separator
	4.5.4. Empty
	4.5.5. ProgressBar

	4.6. Menu GUI Controls
	4.6.1. PopupMenu
	4.6.2. SubMenu
	4.6.2.1. MenuItem
	4.6.2.2. TouchBarItem
	4.6.2.3. Separator

	4.7. Complex GUI Controls
	4.7.1. Panel
	4.7.2. DynamicFrame
	4.7.3. Viewer
	4.7.4. PathBrowser
	4.7.5. DicomBrowser and DicomBrowserTable
	4.7.6. MoviePlayer
	4.7.7. ScreenshotGallery
	4.7.8. WebEngineView
	4.7.9. WebView
	4.7.10. GraphicsView
	4.7.11. ItemModelView

	4.8. Event Handling Controls
	4.8.1. Accel
	4.8.2. EventFilter

	4.9. Other Design Options
	4.9.1. Align Groups
	4.9.2. RichText
	4.9.3. Styles
	4.9.3.1. DefineStyle

	Chapter 5. Translations
	Chapter 6. Test Cases
	Index

