The ML Programming Guide

Programming Object-Oriented Image
Processing with the MeVis Library

The ML Programming Guide

The ML Programming Guide

Copyright © 2003-2023 MeVis Medical Solutions
Published 2023-09-25

Table of Contents

ADOUL ThiS DOCUMIBINT ...ttt ettt et et e e e e et e et et e e e e naa e e e eenans 6
1. What This DOCUMENT CONTAINSuuuiiiiiiieiiiii ettt ettt e et et e e e e eeaas 6
2. What You Should Know Before Reading ThisS DOCUMENTcc.ouuviiiiiiiiiiiiiieeiiieeeceeie 8
3. Suggestions for FUrther REAGINGuuiiiiiiiiiiii e 8
4. Conventions Used in ThiS DOCUMENTuiiiiiiiieiiii e 8
T O 11101 Q] = o PP 9

1. CONCEPLUAI OVEIVIEWiiiiieeeeiti ettt et ettt e et e e et e et et e e e e e e enaens 10
I B O 1Y =T 1 PSP TUPPTT 11
2 o 11 0T o] ORI 11
1.3. ML ClIASSES - OVEIVIEWeitiiieiiiiiieee ettt ettt e e et e et e ettt e e et a e e e e 13

1.3.1. Classes for Module DeVvelOPMENTiiiiiiiieiiii e 13
1.3.2. ADMINISIrativVe ClaSSESuuuiiiiiiiieieii et 13
1.3.3. IMAJE ClASSES ...iiiiiieiiiit ettt ettt ettt e et e e e e e 14
1.3.4. HEIPEI CIASSES ...ueiiitiietiei ettt ettt ettt e e 15
1.3.5. APIs and Classes for Interfaces and Voxel Type EXtensionsccccceevevennnnn. 16
1.3.6. COMPONENE GIOUPS ...uuiiriiiiiieeiiie et ettt ettt et e e e e e e eaens 16
1.3.7. The ML Module Databasecccouuuiiiiiiiieiiiii e 17

2. Detailed Class OVErvieW and USAQGEuuiiiiiiiiiiiiiii ittt e e e e eeena e eeens 19

2.1. Classes for Module DeVEIOPMENTuiiiiiiii e 21
N N I 1V o T ¥ | PPN 21
2.0 2, Fi @1 0 ittt e 21
2.0.3. Fi €1 dCONT A1 MBI .ottt ettt et e et e e e e e e e e e ea e 25
2.1.4. Image Classes for Module DeVvelopmentcccouuiveiiiiiieiiiiiieeii e 27

2.2, ADMINISTFALIVE CIASSESiiiitiieiiii ettt et e e e e s 27
2.2, 0 HOST oottt e ettt ettt et e e e et e e e e e aen 27
A A V1111 VPPN 30
A T = - Y - PO 32
2.2.4. The RUNtME TYPE SYSIEIM ..ottt 32
2.2.5. Debugging and Error Handling SUPPOITveiiiiiiiiiiiiieee e 34

2.3. IMAGE CIASSESciiitiieeiiit ettt ettt ettt et et e e e e e aae 34
A T O 01T 1] o o] 1= o A T TP 34
2.3.2. Medi cal | MBGEPT OPEI L B uuiiiiiiiiii ettt ettt e e eanes 34
2.3.3. | MBgEPr 0PEr t YEXE ENST ON euiitiiit it e e e eaas 35
A R S =T 1= o | - Vo - PP 37
2.3.5. SUDI MBGE/TSUDI MBIgE .vniieiieiit ettt et e e e et e e e e e et e e e e eenaaes 37
ARG T =TI O I 1 1 Vo T PP UPTRPRN 38
2.3.7. Vi1 UALVOI UIMB ettt e e e e e et e e e anns 39
2.3.8. IVEIMDE Y1 ITBGE enitiiite ettt ettt e e et e ettt e et e e e e e e e e e ea e en e en e anaeannas 42

2.4, HEIPEI ClASSEStuiiiiiiii ettt ettt et 44
2.4.1. I mageVect or , IMAgEVECIONieiiii e 44
2. 4.2, SUDI MBGEBOX +uituttietntteieteeete e e e et et et e e e e e e e e e e e et ea et e e et e aae e e e anean 45

2.5. APIs and Classes for Interfaces and Voxel Type EXtENSIONSccceuuvieiiiiinieieiiinnenennn. 46
2.5.1. How Applications and the ML WOrKcccoiiiiiiiiiiiiiici e 46
2.5.2. TRE C-AP et 46
2.5.3. Registering and Using Self-Defined Data TYPEScceevviieiiiiiiiiiiiiiieeeiiieeeeeeenn 46

2.6, TOOIS ..ottt ettt 47
2.6.1. M_Li near Al gebr a(Vector2, ..., Vectorl0, Vectorl6, Matrix2, , ..., Matrix6,
quaternion, IMAGEVECION)ccouuu ittt ettt e e e e ettt e e e e et e e e eata e eens a7
A I Y I B T =Y PRSPPI 47
2.6.3. Ol ClASSESuuiiiiiiiii ettt ettt e e 48
2.6.4. VL BASE euuiitiiii ittt et e et e e e e aeas 50
2.6.5. VLK MBI ettt e e 50
2.6.6. IVLTOO0I S eniieiiii ettt aa e eas 50
2.6.7. VDI A0NOST S wuituituetnttietetie et e e e et e et e e e e e e e e et e e e e e e e e e e aaan 51
2.6.8. MLI MBOEFOr IMBL L.iuuiiiiiiie e e e e e e e e e et e et e e et e et et e e e et e aaesnees 52

The ML Programming Guide

A I Y =Y =@ o 44] =X o 53

A A = To 1Y (=T = To T - N Y/ o1 T PP 57
R B Y | B T = W Y/ o1 PP 57
2.8.1. Voxel Types and Their ENUMEratorsccuoviiiiiiiiiieiii e e e 57
2.8.2. Index, Size and OffSEt TYPES ...uiivviiiiii e 58

3. Deriving Your Own Module from Modulecoouiiiiiii e e 60
G0 I B 1= YT o o 1Y o Yo (¥ L= 61
I 0 B = = T o U PT 61
3.1.2. Implementing the CONSIIUCIOLiiviiiiii e e 63
3.1.3. Module Persistence and Overloading activateAttachments()ccoovevveeennnnn. 65
3.1.4. Implementing handleNotification()cccoeviiiiiiii i 66
3.1.5. Using TypedCal cul at eQut put | mageHandl €rcccoveviiieiiiiiiiiieeie e 66
3.1.6. Implementing calculateOutputimagePropertiesS()ccoevvveiiiiieiiieeeiiiecie e, 67
3.1.7. Implementing calculatelnputSublmageBoX()cccvvveiiiiiiiiieiii e 68
3.1.8. Changes to calcInSublmageProps()ceevuiviiieiii e e 69
3.1.9. Implementing calculateOutputSubimage()ccuovviiiieiiie e 69
3.1.10. Handling Disconnected or Invalid Inputs by Overloading handlelnput() 74
3.1.11. Configuring Image Processing Behavior of the Modulecccooeiiiiinn, 75
3.1.12. Explicit Image Data Requests from Module INputscccccevieiiiiiiiii i, 80
3.1.13. Getting Single Voxel Values from Module INPUtscccoviiiiiiiiiiieiiieceeeen, 81
3.1.14. Interrupting Page-Based Image Processing and Handling Errors 82
3.1.15. Testing for Interruptions During Calculationscccoooeieiiiiiiii i 82
3.1.16. Adapting Page EXIENLSccuuiiiiiiiii e e 83
3.1.17. Processing Input Images Sequentiallyccccooviiiiiiiiiiiiiiice e 84
3.1.18. Traps and Pitfalls in Classes Derived from Modulecccoieiiiiiiiiieiinenn. 86

4. Image ProCesSSING CONCEPLSuiiiuiiiiiiiiiiii et et e e e e e e e e e e et e e et e e et aeeae e et eeaaeeaanaees 89
4.1. Page Calculation iN the MLccooiiiii e e 920
4.2. Page-Based APPIrOACHESiiiiiiiiiieii et 90
4.2.1. Page-Based CONCEPLciitiiiiieii et e e e e e e e e e e 90
4.2.2. VOXEI-BASEA CONCEPL .. oevneiiiieii ettt e e e e e e e e e e ea e eaes 91
N TS [ol = 7= 1Y <o I @ (o7 | A 93
4.2.4. Kernel-Based CONCEPLuuiiiuiiiiiieiiie et et e et e e e e e e e e e e e et e e e e aaaeees 95

4.3. Concepts for Partially Global Image ProCessingccceuveviiiiiiiiieiiiieeie e ee e, 95
4.3.1. Random Access Concept (Tile Requesting)cocvuviiiiiiiiiiiieiii e eeeiees 95
4.3.2. Sequential Image Processing CONCEPLccevuieiiiiiiiieiiie e e 96
4.3.3. Virtual Vol Ume CONCEPL ..ouiiiiii e e e e 97

4.4. Global Image Processing CONCEPLS ...couuiiiiniiiiii e e e e e e e eaens 97
4.4.1. Temporary Global CONCEPLuiiiiieiiii e eae e 97
4.4.2. Global Image Processing CONCEPLeivvnieiiieiii i e e e e e e ea e e 98
4.4.3. Bit 1 MBGE CONCEPL ..ottt et e e e e e eas 99
4.4.4, MenDryl mBge CONCEPL ..ouiiiiiiie et 99

4.5, MIiSCellan@oUS MOAUIESuiiiiiiiieeii e et e e e e e e e s 99
5. Debugging and Error HanAliNgGccouuiiiiiiii et e e e e e e e e 101
5.1. Printing Debug INfOrMationccoouiiiiiii e e e e e 102
7 o - U Lo | T o Y4 o T £ PPN 105
5.3. Registering Error HaNAIEr'Sccouuiiiiiiiii e e e 106
5.4. The Class Er r or Qut put and Configuring Message OUIPULSccvveviieiiiieiiinienins 107
5.5. Tracing, Exception Handling and Checked Object Construction/Destruction 109
T I8 L= O L PP 113
B.1. TRE CoAPI et 113
6.2. MINItSYSIEMMLLN .. e e e e e 113
8.3, MIA P LN e 113
6.4, MIDAIATYPES. N oo e 114
6.5, MITYPEDEIS. N o e 114
6.6. C-Example USING the C-API ... e e e e 115
7. Registered VOXEl DAt@ TYPES ..vvuiiiiiiiiiieeiiee et ettt e e e e e e e e e e e e e et e e et e e e eanaeeeen 118
7.1. Overview of Registered VOXel Data TYPESuuviviuiiiiiieiiiiiei e e e e e e e e 119
7.1.1. Registered VoXel Data TYPES ...uuiiiiuiiiiieiii i e e e e e e e e e et eeaaeees 119

The ML Programming Guide

7.1.2. About Standard, Default and Registered Voxel TYPESccvvvvviiviiiiieiiierinnennnn. 120

7.2. Implementing Image Processing on extended Voxel Data TYPeSccoeevvveviiievinnennnnn. 122

7.2.1. Important Functions FOr VOXel TYPEScvvvniiiiiiiiii i 123

7.2.2. The Basic Concept of Calculating the Output Sublmagecccoeeviieviinennnn... 124

7.2.3. Examples with Registered VOXel TYPESuiviiiiiiiiiiiiiieei e, 124

7.2.4. Compile and Runtime Decisions on Standard and Registered Voxel Types 130

7.2.5. Handling Generalized Registered Voxel Types as Module Parameters 131

7.3. Limitations of Registered Data TYPES ...ccuuiiiiiiiiii i e e s 133

7.4. Traps and Pitfalls When Using Registered Voxel TYPEScccccoveviiiiiiiiiiiieiieeeeeeeenn, 134

7.5. Advanced Issues on Registered VOXel TYPES . .covuiiiiiiiiiiiiiiieeie e 135
7.5.1. About the Difference Between Scalar, Extended and Registered Voxel Types... 135

7.5.2. Getting and Managing Metadata About Registered Voxel Typesccceeeeenne. 137

7.5.3. Reducing Generated Code and Compile TIMESc.vvvviiiiiiiieiiii e, 144

7.5.4. Configuration of Supported VOXel TYPESccvvuieiiiiiiiii e 146

7.5.5. Implementing a New Voxel Data Type by Deriving from MLTypelnfos 147

8. BASE ODJOCES ..iiiiiiiii i e 153

SN I == oY @] [T o £ PPN 154

8.2. Composing, Storing and Retrieving Base ODJECESccuoveiiiiiiiiiiiiii e, 154

8.3. Creating Trees from Base Objects Using TreeNOdEeScoeevviiviiiiiiiiieiiiiecieeeeiee e, 154

8.4. Writing/Reading Base Objects to/from AbstractPersistenceStreamccocccevevvnnnnen. 156

LS T [o1 TooTo [T U]] o o] g (R 159

1S I o TT oo o LTS UT o] o o] o HF N 159

10. File SYSIEIM SUPPOI ..t e e e e e e e e e e e e et e e et e et eeat e e et e aeanaes 161

O O 1 =T V) (=T 1 161

A. Basics about ML Programming and PrOJECESoiiuuiiiiiiiii e e e e e e 164

A.1. Creating an ML Project by Using MeVisLabccccoiiiiiiiiiiii e 165

A.2. Programming EXAQMPIEScouuiiiiiiieii e e 165

A.3. Exporting Library SYmbBOoISccoouiiiiii 166

A.4. General Rules for ML Programmingoeeeuioiiieiii e e e e e e e e eeanaeeaen 167

A.5. How to Document an ML MOUIEoouuiiiiiiiiiiiiii et 168

A.6. Updating from Older ML VEISIONScc.uuiiiiiiiiiieiie et e e e e e e e e e e e eanes 169

F N Y =T =T I e o1 (o] PSPPSR 170

B. Optimizing IMage PrOCESSINGuuiiitiiii et et et e e e e e e e e e e e e e et s e e et e e e e e et aeeanaeees 173

B.1. Optimizing ModUIE COUEccuiiiiii et e e e 173

B.2. Optimizing Data Flow in Module NetWOrKSccocouiiiiiiiiiiie e, 174

C. Handling Memory ProbIEMScouuiii et e e et e e e aens 176

D. MESSAQES AN EFTOIS ...cvuiiiiiiiiiee ittt e e et e e e e e e et e e et e e et e e et e e et e e et eaenaee 179

[20 | Yy o T 0o T [P 179

E. Improving Quality of ML-Based SOftWArecoiviiiiiiiii e 186

L (0TS TT= Y 187

About This Document

This document describes nature, contents, usage and ways to enlarge the MeVis Image Processing
Library (ML), often also called MeVis Library.

1. What This Document Contains

Chapter 1, Conceptual Overview provides information on the ML itself, its purpose, and its components.

Chapter 2, Detailed Class Overview and Usage gives a detailed survey of the most important ML classes
and discusses their purpose and usage.

Chapter 3, Deriving Your Own Module from Module explains in detail how to implement your own image
processing module by deriving a new class from the class Modul e.

Chapter 4, Image Processing Concepts addresses some concepts to find optimal implementation
strategies for different algorithm types.

Chapter 5, Debugging and Error Handling gives a detailed introduction into the error and message
handling system, as well as in logging and exception handling functionality of the ML.

Chapter 6, The C-API is an introduction to the C programming interface of the ML which can be used
by applications and other programming languages.

Chapter 7, Registered Voxel Data Types shows how registered voxel data types work, how they can
be used, implemented and registered in the ML.

Chapter 8, Base Objects describes how to (re)store self defined class objects with ML concepts.

Chapter 9, Unicode Support discusses how international/unicoded characters are handled by the ML.

Chapter 10, File System Support describes how files can be managed platform independently with
international/unicoded file names.

Appendix A, Basics about ML Programming and Projects discusses some programming and system
requirements needed to implement ML modules.

Section A.1, “Creating an ML Project by Using MeVisLab” is a quick start for module development using
MeVisLab.

Section A.2, "Programming Examples” gives an overview of ML programming examples available with
the MeVisLab software development kit.

Section A.3, “Exporting Library Symbols” discusses how library symbols are exported to other libraries.

Section A.4, “General Rules for ML Programming” addresses some different issues important for
ML module programming, especially to avoid some typical traps and pitfalls when programming ML
modules.

Section A.5, “How to Document an ML Module” gives some general documentation hints and tips so
that your module fits into the ML module database and into MeVisLab

Section A.6, “Updating from Older ML Versions” describes some compatibility problems and solutions.

Section A.7, “Version Control” explains how different ML versions can be detected.

Appendix B, Optimizing Image Processing is a list of hints and approaches to optimize module networks
and self implemented ML modules to reach best performance.

About This Document

Appendix C, Handling Memory Problems discusses how to avoid and handle the "Out of Memory"
problem.

Appendix D, Messages and Errors describes which messages and errors are handled by the ML by the
class Error Qut put (Section 5.4, “The Class Er r or Qut put _and Configuring Message Outputs”).

Appendix E, Improving Quality of ML-Based Software summarizes references to sections which discuss
tools, ideas, and classes to improve software quality.

The Glossary is a survey of technical terms used in this document.

About This Document

2. What You Should Know Before Reading
This Document

This document assumes that you are familiar with object-oriented programming in C++. A good
knowledge of image processing techniques will facilitate the understanding of the described algorithms.
Knowledge of the application MeVisLab, which is strongly related to the ML, is also recommended.

The ML described in this document has the version number 1.8.67.23.86 and is used in MeVisLab 1.6
and later.

Note
Since the ML is still under development, this document is also "work in progress”, i.e., some

paragraphs may not be completely up to date.

3. Suggestions for Further Reading

For ML and MeVisLab: https://www.mevislab.de

For C++:

* Lippman, S. B., C++ Primer, Fourth Edition, Addison-Wesley Longman, 2005.

 Lischner, R., C++ In A Nutshell, A Language & Library Reference, O'Reilly, 2003.

» Stroustrup, B., The C++ Programming Language. Special Edition, Addison-Wesley Longman, 2000.
For ITK™: http://www.itk.org

For VTK™: http://www.vtk.org

For Open Inventor™:

» Wernecke, J., The Inventor Mentor, Release 2, Addison-Wesley, 1994.

» Wernecke, J., The Inventor Toolmaker, Release 2, Addison Wesley, 1994.

For Digital Image Processing:

e Gonzalez, R. C., Woods, Richard E., Digital image Processing, Second Edition, Prentice Hall, 2002.
« Jahne, B., Digitale Bildverarbeitung, 4. Auflage, Springer, 1997.

» Sonka, M., Hlavac, V., Boyle, R., Image Processing, Analysis, and Machine Vision, Second Edition,
PWS Publishing at Brooks/Cole Publishing Company, 1999.

4. Conventions Used in This Document

There are some textual conventions used in this document:
» This C assNane is a class or a module name.

» This Const ant is a constant or a macro.

e This Functi on is a function or method.

e This Par amet er is a parameter or a function/method argument.

About This Document

e This Fi | eNane is a file or a path name.
Additionally, the following pictograms are used:
* Program listings:

{

std::cout << "This is some program code." << std::endl;

}

» This is a tip or a useful hint:
Tip
Hey, do it like this! It's better than the other way!
» This is important for understanding and correct programming:
Important
Look at this stuff! It's really important!
e Try to avoid this or do it carefully:
Warning
If you do this, you really should know what you do... it could be dangerous otherwise.

* General notes are shown like this:

‘ Note
This is some interesting additional information.

In many cases, simplified or artificial words will be used without introducing them explicitly if they are
self-explanatory.

5. Quick Start

The following chapters are suggested for experienced programmers who want to venture on a quick
start in module development without reading this document in detail:

 Start with chapter Getti ng St arted of the MeVisLab SDK documentation.

» Continue with Appendix A, Basics about ML Programming and Projects to get an overview of important
files and module wizards.

Although these chapters contain some redundant information, they provide different approaches to
begin module development for MeVisLab and in the ML.

Chapter 1. Conceptual Overview

Chapter Objectives

By reading this chapter, you will get to know

* the basic ML features (see Section 1.1, “Overview”),

« the concepts used in the ML (see Section 1.2, “Principles”),

» asurvey of ML classes:

the classes used for ML development (see Section 1.3.1, “Classes for Module Development”),

the administrative classes (see Section 1.3.2, “Administrative Classes”),

the image classes (see Section 1.3.3, “Image Classes”),

the helper classes (see Section 1.3.4, “Helper Classes”),

the APIs and classes for interaces/voxel type extension (see Section 1.3.5, “APIs and Classes for
Interfaces and Voxel Type Extensions”),

the component groups (see Section 1.3.6, “Component Groups”),

» and a short overview of modules already implemented or available in the ML Module database (see
Section 1.3.7, “The ML Module Database”).

10

Conceptual Overview

1.1. Overview

The MeVis Image Processing Library (called ML in the following) represents a general approach to
image processing. It is based on the following principal ideas:

» Image processing algorithms are represented by modules (sometimes also called operators or
nodes).

» Modules are mainly arranged in a directed graph that represents the flow of image data.

* Modules implement a unified image processing interface.

* Modules are self-descriptive by exporting their parameters as fields (field interface).

» Image data is processed in fractions, i.e., page by page (paging).

» Pages can be processed in parallel if supported by a module (multithreading).

» Image processing is performed on a request-oriented basis (pull model, processing on demand).
» Images can have up to six dimensions.

» Image pixels (called voxels in this document) can be single scalars or structures (e.g vectors, complex
values or matrices).

» Platform independence, pure C++ code running on Windows, Linux and Mac OS X.

« A Cinterface of the ML is available for applications that do not use C++.

1.2. Principles

When you start using the ML, you should understand the most important ML properties and features.
1. Modules and Host

Generally speaking, the ML is a C++ library that contains many classes for efficient image
processing.

This requires a number of image processing algorithms derived from the module base class
Modul e (called Modules), and an entity that controls these modules and organizes the data transfer
between them - the Host . Each module has a self-descriptive parameter interface built of so-
called Fields that also automatically implements module persistence.

2. Module Networks
For complex image processing tasks, many image processing steps need to be combined:

» To solve an image processing problem all required modules need to be combined to a module
network that defines the image data flow as a directed module graph.

» During image processing, the image data flow is realized as a flow of image fractions, the so-
called pages which can be regarded as rectangular subimages that contain image data.

» The image data flow is demand-driven, i.e., the module network processes only pages that are
needed for output image computing. This concept is often also called pull-driven or request-
driven.

3. Image Model

An ML image has the following properties:

11

Conceptual Overview

« It has up to six dimensions (X, y, z extent, color (c) dimension, time (t) dimension and user (u)
dimension).

 Although color and color channels are supported (4th dimension), the ML is generally color format
independent.

» Image pixels (called Voxels for Volume Pixel) can be simple scalars or structured elements.

» Generally, an image consists of a set of properties (extent, data type, page extent, medical
information, voxel extent, DICOM tags, etc.) and

» aset of image data fractions (pages) in memory.

Advanced Features

The ML offers some special features to support advanced image processing:
 Intermediate results are automatically stored in a buffer to avoid recalculations (caching).

» Pages can be processed in parallel during image flow processing (if supported by the modules).
See Section 3.1.11.3, “Multithreading: Processing Image Data in Parallel” for more information.

» Classes for Error Handling, Debugging and Memory Management are available.

* The ML is platform independent, i.e. it runs on Microsoft®, MAC and Linux platforms, and should
be portable to other platforms without much effort.

* All C++ code of the ML is written in its own namespace to protect it from collisions with other
libraries.

* A C-Application Programming Interface (C-APIl) is available to provide the ML to other
programming languages.

* A Runtime Type System provides a factory for all important classes, modules and types.
Class Groups

The ML provides a set of classes that can be divided into three groups:

» Core classes that build the basics for image processing and module handling

» Helper or user classes that simplify the implementation of algorithms

» Aggregated projects that are not necessarily part of the ML, but essential or very useful for
advanced image processing.

Module Database
There is a large number of modules that cover many image processing tasks:

» Input/Output, Arithmetic, Segmentation, Morphology, Geometry, Statistics, Medical Analysis,
Drawing, Diagnosis, and many other.

* When ML is used in conjunction with MeVisLab, a large number of
* modules for ML image visualization (2D and 3D)
¢ modules for standard 3D scene modeling and
« macro modules for complex image processing and visualization tasks

is also available.

12

Conceptual Overview

1.3. ML Classes - Overview

The ML does not only implement base classes for image processing, but also covers areas such as linear
algebra basics, error handling, debug functionality, a runtime type system, runtime types for voxels,
observable parameter classes, containers for fields and much more.

The following sections will give a short overview of most of these classes and will explain their purpose.

1.3.1. Classes for Module Development

This chapter gives a survey of the most important ML components, classes and interfaces.

1.3.1.1. Mbdul e Overview

The class nl:: Mbdul e isthe base class from which all image processing modules need to be derived
to implement new algorithms for image processing. It provides a number of virtual methods which can
be overloaded to implement and control image processing, and to handle/add/change algorithm and
processing parameters. See Chapter 3, Deriving Your Own Module from Module for more information.

1.3.1.2. Fi el d Overview

The m::Field class encapsulates a data type such as an integer, a vector, a matrix, a string or
even an image or a complex data structure. Currently, about 60 field types are available in the ML. A
field is useful for various purposes: It can be observed for changes (listener pattern), its state can be
saved/restored by handling its value as a string, and it can be connected with fields of other modules
for data transfers. Modules use these features for creating a reflective, self-descriptive and persistent
parameter interface. See Section 2.1.2, “ Fi el d ” for more information on fields.

1.3.1.3. Fi el dCont ai ner Overview

The m:: Fiel dContai ner class manages a list of fields. A module is derived from the field container,
so all modules manage their fields themselves. See Section 2.1.3, “ Fi el dCont ai ner " for more
information.

1.3.1.4. Image Classes Overview

The ML does not process images as a whole but breaks them down into smaller fractions of identical
extents, the so-called pages (see Section 2.3.4, “ Pagedl nage "). Pages can be easily buffered, cached
and processed in parallel without spending too much memory or time. The ML cache stores pages
that have a chance to be reused. For algorithms that cannot easily be implemented on a page basis,
the ML provides specialized classes that also use internal paging, if possible. See Section 2.3.7, “
Vi rtual Vol une ”, Section 2.3.6, “Bi t | nage "), Section 2.3.8, “ Menor yl mage " and Section 1.3.3, “Image
Classes” for details.

1.3.2. Administrative Classes

1.3.2.1. The Host Overview

The nl::Host s the core class of the ML. It manages the entire image processing workflow
including on-demand, page-based image processing, caching and parallelization as well as calling
module functionalities for image processing. It also provides functions such as checking and updating
module graphs, calculating (sub-) images with get Ti | e() commands and caching intermediate results
by using the M_LMenor yManager (see Section 1.3.2.2, “The M_Menor yManager _and Memory Handling”).
It checks and processes a set of ML modules that have been derived from the class Mbdul e (see
Chapter 3, Deriving Your Own Module from Module) and are connected forming a directed acyclic graph.

13

Conceptual Overview

1.3.2.2. The M_Menor yManager and Memory Handling

The M.MenoryManager is dedicated to managing a certain buffer memory (the Page Cache) where
pages that have been generated by an image processing module are stored for later reuse. If a given
cache limit is exceeded, the memory manager frees memory blocks using a least-recently-used caching
strategy until the cache limit is no longer exceeded. The MLMemoryManager provides strong and weak
smart pointers to keep reference to managed memory blocks and is not limited to the use of ML pages,
can be used by other application libraries as well and allows to make libraries cache-aware. Memory
blocks that are locked by a smart pointer will not be removed, so it is possible that the cache size
exceeds the limit temporarily.

1.3.2.3. Menory Overview

Since the ML is dedicated to efficiently processing images that are too large for being stored in memory,
the ML controls memory handling globally in order to allow for a safe and efficient memory usage.

The ML class Menory currently provides functions for memory allocation, reallocation, freeing, etc. It
contains only basic functionality. In future versions, it will use automatic strategies to (re-) organize and/
or clean up the memory (and the ML cache) to reduce or prevent out-of-memory errors. Allocation errors
can be handled by the ML or by users in different ways. See Section 1.3.2.3, “Menory Overview” for
more information.

1.3.2.4. The Runtime Type System

The Runtime Type provides an interface where all important classes and modules can register
themselves (see Section 2.2.4, “The Runtime Type System” for more information). It stores class names,
types, source library, parent classes, etc. It also provides a factory that permits the creation of instances
of any registered (non-abstract) class from a class name string. It is crucial for applications such as
MeVisLab that need to handle databases and networks of modules not yet known when the application
is compiled. These concepts are realized by the classes Runti ne, Runti meDi ct and Runti neType as
well as by a set of macros that implement runtime module interface functionality.

1.3.2.5. Debugging Overview and Error Handling Support

The ML supports debugging and error handling (see Chapter 5, Debugging and Error Handling for more
information).

Debug output can be controlled in the ML, i.e., it can be enabled/disabled for the entire ML or activated
for individual classes.

Errors can be handled on different levels. In general, programmers should check for errors and handle
them by using dedicated error handling macros and never by using statements such as assert, abort
or exi t , because the application cannot manage or log these statements. The way how the ML behaves
on errors can be configured globally. The ML could generate an e-mail and terminate, or display a pop-
up window and try to continue. The behavior on errors should always be configured globally for the ML.

The classes ErrorQutput and ErrorQutputlnfos are used for error handling and ML output
redirecting. They contain a set of static functions to print debug information, warnings, errors and fatal
errors. There is a registration mechanism where the application can register itself to be notified when
an error, a warning or some debug information is to be printed or handled.

1.3.3. Image Classes

1.3.3.1. I nageProperties Overview

The ni::l1mageProperties class describes the basic image properties 6D image extent, voxel
data type, and minimum and maximum voxel values. See Section 2.3.1, “ | mageProperties " or
m | mageProperties. h in project M. for more information.

14

Conceptual Overview

1.3.3.2. Medi cal | rageProperties Overview

The m :: Medical I mageProperties class is derived from | magePr operti es. It contains additional
information specialized for medical data sets, like voxel size, image orientation and position, a reference
to the image's DICOM information and descriptions of color channels, time points and the user
dimension. See Section 2.3.2, “ Medi cal | rageProperties " or m Medical | nrageProperties.h in
project M. for more information.

1.3.3.3. Pagedl nage Overvi ew

Since images are usually not processed as a whole by the ML, it is necessary to break them down into
smaller fractions of identical extents, the so-called pages. The ni :: Pagedl mage class is derived from
the class Medi cal | magePr operti es (see Section 2.3.2, “ Medi cal | magePr oper ti es” and thus inherits
all properties that describe an image. It is dedicated to managing paged images in the ML and also to
representing image outputs of ML modules. See Section 2.3.4, “ Pagedl mage ” or nl PagedI nmage. h
in project M. for more information.

1.3.3.4. Sublnage and TSubl mage Overvi ew

This class represents image, subimage and page buffers, hence knowledge about this class is crucial for
programming most image processing algorithms. It manages chunks of voxel data, copies or fills them
and offers fast data access methods with offset/stride usage. n :: TSubl mage is the typed version
of nl::Sublmage which permits typed data access. See Section 2.3.5, “Subl mage/TSubl mage”, or
m Subl mage. h in project M.

1.3.3.5. Virtual Vol une

For many algorithms, the implementation of a page-based approach might be difficult. A typical example
is a filling algorithm that needs random access to the input image, even if only one voxel of the output
image is required. Such algorithms can be implemented efficiently by using the n :: Vi rtual Vol ume
and nl::TVirtual Vol une classes (see Section 2.3.7, “ Vi rt ual Vol une ") without breaking the page-
based approach of the ML. A Vi rt ual Vol une class requests/calculates the image data when needed
and rejects it if not needed anymore. Thus large images can randomly be accessed without the need
to keep them completely in memory.

1.3.3.6. Bitlnage

The m::Bitlmage class (see Section 2.3.6, “ Bi t | nage ") supports the memory-efficient creating,
copying, filling, addressing of packed 6D binary images, and interactions with the class Subl nage and
Vi rt ual Vol ume (see Section 2.3.5, “Subl nage/TSubl mage” and Section 2.3.7, “ Vi r t ual Vol une ".) This
is often useful for algorithms that need to mark or tag all voxels of a page or an image, or for those
algorithms that simply need to handle large binary images.

1.3.3.7. Menoryl nage

Algorithms that need access to an entire non-paged memory-mapped image may use the Menor yl mage
approach (see Section 2.3.8, “ Menor yl nrage ") for image processing. This approach breaks the paging
principle and should only be used if it cannot be avoided and if it is safe to load the whole image
into memory. The memory image is integrated as a special member of the class Pagedl mage (see
Section 2.3.4, “ Pagedl mage ") and can thus be used in parallel or instead of a paged image.

1.3.4. Helper Classes

1.3.4.1. | mageVect or

The class ml:: I nmageVector manages a 6D point or vector with integer components and
is used for voxel positions, image extents, page extents and boxes. The typical (integer) vector

15

Conceptual Overview

arithmetic is available as well as are methods for minimum and maximum component determination,
lexicographical comparisons, stride operations and component multiplication for voxel addressing, etc.
See Section 2.4.1, “I mageVect or , ImageVector” for more information.

1.3.4.2. Subl mageBox

The class m :: Subl mrageBox manages a rectangular 6D box specified by two integer | rageVect or s
that represent its corners. It permits intersections, calculation of voxel volumes, etc. (see Section 2.4.2
“ Subl mageBox "). Like the class | rageVect or (see Section 2.4.1, “I mageVect or, ImageVector”), it is
available in 16, 32 and 64 bit template specializations. The default version Subl mageBox also uses
64 bit integer addressing. An analogous class that uses 6D double (Vector6) vectors is available as
Subl mageBoxd in the file nl Subl nageBoxd. h .

1.3.5. APIs and Classes for Interfaces and Voxel Type
Extensions

An easy way to use the ML is to link the C-API (see Section 6.3, “mIAPIL.h") of the ML. It provides a
set of functions to create/delete modules, set their parameters (fields), to connect them and to request
images from their outputs. The C-API allows non-C++ applications to make use of the ML. This interface
is more stable than the C++ interface which may be modified more frequently and is not guaranteed to
be binany compatible between ML versions.

The ML supports a set of scalar data types for image voxels (signed/unsigned 8, 16, 32, 64 bit integer
types and float, double) as well as extended data types (see Chapter 7, Registered Voxel Data Types,
Section 7.5.5, “Implementing a New Voxel Data Type by Deriving from MLTypelnfos”) that permit the
usage of composite data types added by the user or by the ML itself. It is not necessary to recompile
the ML to make use of these types, but modules might need to be adapted depending on how they
were written.

1.3.6. Component Groups

ML classes can roughly be divided into three groups - Core Classes, Helper or User Classes
and Aggregated Projects and Classes. Note that these classes are not necessarily in the same
directory or project. Also note that some of these classes are not directly located in the project ML.
Basic functionality is typically located in the project MLUti lities (see Section 2.6.2, “ M. Utilities
", vector and matrix arithmetics are located in the project MLLi near Al gebra (see Section 2.6.1
“MLLi near Al gebr a(Vector2, ..., Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”

and classes related to image processing are located in the project M_.

» Core classes that provide the basic functionality for image processing and module handling:

« Modul e_the base class for image processing modules,

e Field, FieldContainer_ andFiel dSensor for module parameters,

e Host , M_MenoryManager _for image data and image flow management,

e I mageProperties_and Medical | mageProperti es_forimage properties,

« | magePr opert yExt ensi on_that can be appended to medical image properties,
* Pagedl rage and Menoryl nage for image handling,
* Subl mage / TSubl nrage for image, subimage and page handling,

e ErrorQutput (from project Section 2.6.2, “M.Ut i | i ties ") for error handling and logging,

* | nput Connect or, Qut put Connect or for module input/output image connections.

16

Conceptual Overview

Helper or user classes and projects simplifying the implementation of some algorithms:

Runtime , RuntinmeDict and RuntineType (from project Section 2.6.2, “ M.Utilities ”) for
object factories and class management,

I mageVect or _and Subl mageBox_ for position and region management,

Linear algebra classes like Vect or 2, Vect or 3, Vect or 4, Vect or 6, Mat ri x3, Mat ri x4 (from project
M_Li near Al gebr a),

M.Typel nf os for registered and user-defined data types (see Chapter 7, Registered Voxel Data
Types),

Rot at i on, Di sc, Subl mageBoxd, Li ne, Pl ane parameters for modules,

Dat eTi me, Ti meCount er, Noti fy (from project Section 2.6.2, “ M.U i li ties ") for high precision
time measurement, and

Scal eShi ft Dat a for image data scaling.

Aggregated projects and classes that are not necessarily part of the ML but that are essential for
advanced image processing:

Bi t | mage_ for flag and mask images,
M.Base for point, function, marker, and vector lists, etc. that can be passed between modules,

M_Dat aConpr essor _ for data compressor classes,

M_Di agnosi s_with support for module tests and inspection,
M.I mageFor mat _ for ML specific file 10,
Vi r t ual Vol une_for random access to (large) paged images,

and many more.

1.3.7. The ML Module Database

Many modules that use the ML are already available to developers:

Image file 10 and DICOM support,

Arithmetic (Add, Subtraction, Inversion, And, Or, Xor, Sqrt, Sqr, Log, Exp, etc.),

Base objects for marker, vector, point or general object lists,

FlowControl (ImagelteratorStart/End, Switch, Bypass, etc.),

Geometry (image resizing, subimages, resampling, concatenation, MPR, etc.),

Distance and projection transformations (Radon, DistanceTransform, etc.),

Segmentation (medical imaging: LiveWire, vessels, tumors, region growing, thresholding, fuzzy),

Registration and image matching,

Drawing (RasterFunctions, Draw2D, Draw3D, LiveWire, etc.),

Statistical (GlobalStat, CalcVolume),

Morphology (Rank, Min, Max, Median, Gauss, Average, Statistical, Laplace, Edge detectors,
CloseGap, Surround, etc.),

17

Conceptual Overview

Transfer functions (Look up tables),

Obiject (list) handlers,

Color (model) management (color converters and tables),

Diagnostic modules for controlling ML core functions and for error and debug handling,
Texture analysis filters,

Lodfile, tester and inspector modules,

and many more.

When using the ML in combination with MeVisLab, a large number of non-image processing modules
can also be used for module networks and applications:

Viewers (2D, 3D, Shadow, Slab, Slice Viewer, Volume Rendering, etc.),

Vessel visualization,

2D/3D object list and marker managers and visualizers,

Transfer functions (Look up tables, LUT),

Diagram visualization (draws 2D coordinates, markers, points, lines, etc.),

Contour Segmentation Objects (CSO) for contour drawing, manipulation and conversion,
Winged Edge Mesh library (WEM) for iso surface management and surface shaded display,
Interactions (View2DExtensions, Manipulators, Draggers, MarkerEditor, etc.), and

a set of (helper) macros (e.g., convenience viewers, frequently used module groups, converters
between scalars, vectors, matrices, etc.).

The following scientific packages (each of them offering hundreds of algorithms) are available:

Open Inventor ™: A set of modules (nodes) for 3D rendering with cameras, transformations, 3D
viewers, textures, 2D and 3D text, manipulators, shape objects, etc.

The Insight Segnentation and Registration Tool kit ™: Algorithms for advanced image
processing, registration, and image analysis.

The Visualization Tool kit ™: Algorithms for advanced visualization, rendering, and image
processing.

18

Chapter 2. Detailed Class Overview
and Usage

Chapter Objectives
This chapter will give you a detailed overview of most ML classes and tools:
» Classes for Module Development
¢ Modul e, the base class from which new modules are derived,
* Fi el d, a class to encapsulate, manage and observe module parameters,

* Fi el dCont ai ner _, a parent class of module to manage a set of fields.

 Classes for administering ML internals as well as for managing Base objects and modules
* Host , the core class managing image processing, data flow, parallelization, etc.,

« M.Menor yManager _, library to store temporary (image) pages for reuse,

e Menory providing an interface for reliable memory allocation and error handling on failures,
* Base_, the base class for most ML classes, e.g., to implement a general persistence concept,

e The Runtime Type System classes Runti ne, Runt i meType and Runti meDi ct for object factories
and type management,

» Debugging Classes.

» Helper Classes for 6D (voxel) positions and subimage boxes (Section 2.4.1, “I nageVector,
ImageVector”, Section 2.4.2, “ Subl mageBox "

e Image Classes to describe images, image properties (Section 2.3.1, “ | mageProperties ",
Section 2.3.2, “ Medical | mageProperties ", Section 2.3.3, | magePr oper t yExt ensi on_"),

subimages (Section 2.3.5, “Subl mage/TSubl nage”) and paged images (Section 2.3.4, “ Paged| nage

“

e Bi tlmage_to handle packed flag and binary images,

e Virtual Vol une_for global page-based image processing,

* Menoryl mage for special cases that require completely memory-mapped images.
» Tools and helper classes to support advanced image processing

e Some Vector and matrix arithmetics (M_Li near Al gebr a),

» Classes and tools for kernel-based image processing (Section 2.6.5, “ M_Ker nel "),

« A tool box with a set of frequently used helper functions (Section 2.6.6, “ M.Tool s ”).

» Several diagnosis modules (Section 2.6.7, “ M_Di agnosi s "),

« Classes to save, modify, load and query ML image data in a dedicated ML file format (Section 2.6.8
“ MLI mageFor mat "),

» Data compressor classes (Section 2.6.9, “ M_Dat aConpr essor s).

» Classes that contain additional voxel data types (RegisteredDataTypeClasses)

19

Detailed Class
Overview and Usage

» Important data types used in ML sources (Section 2.8, “ML Data Types”).

20

Detailed Class
Overview and Usage

2.1. Classes for Module Development

2.1.1. Modul e

m : : Modul e is the base class all ML modules are derived from. It is crucial to know this class for being
able to extend the ML module database. See Chapter 3, Deriving Your Own Module from Module for a
detailed description of this class and how to derive own modules from it.

2.1.2. Field

A field is a C++ class which simply encapsulates a data value such as an integer, a vector, a matrix, a
string or even an image or a complex data structure. All fields are derived fromthe m::Field base
class. Currently, about 60 field types are available in the ML. Due to the following reasons, fields may
be considered as one of the most powerful ML features:

A field's value can be set/retrieved as a string value from the base class, but each derived version
has also set/get methods for typed values. The string value methods permit an application to work
with field values without considering the field type.

Fields can be observed. Each time a field is modified, all observers are notified and can adapt
themselves to the new field value. A standard observer is, for example, the module that contains the
field. Other observers could be the user interface (of the module using the field) or other fields that
update themselves if the value changes.

A field can be attached to other fields. Whenever the field is changed, the connected fields are notified
and/or the new value is transferred to the connected field. In module networks, this is a powerful
feature to hard-code information flows, i.e., to define how modules can communicate with each other.
This heavily reduces code complexity of applications that use such networks.

Since fields support setting/reading their values as strings, all fields can accept values from other
fields. A transferred value is scanned as far as possible, i.e., an integer value will accept float values
(only the integer fraction) and vice versa. But also vectors accept integers, doubles, floats and vice
versa; enumerated values can be set as integers, etc.

All ML modules use fields for their parameter interface. Each module includes a field container which
can handle an individual list of fields. There is no need to know set or get methods to communicate
with a module. Hence, the application MeVisLab can simply ask the field container of a module to
return all fields, their names and their values, and can automatically create a user interface for the
module or it can save/load the field values for persistence.

2.1.2.1. Standard Fields

The following derived field classes are part of the ML:

BaseFi el d - Contains a pointer to any Base object (Section 2.2.3, “ Base_”). Using BaseFi el ds,
arbitrary Base data structures can be shared between modules.

Bool Fi el d - Contains a Boolean value.
Col or Fi el d - Contains an RGB color value.

Fl oat Fi el d- Contains a floating point number.

Doubl eFi el d - Contains a floating point value with double precision.

EnunfFi el d - Contains a list of strings that represents an enumeration value as well as an index to
the currently selected entry.

21

Detailed Class
Overview and Usage

I nput Connect or Fi el d - Contains an input connector value which can be connected to the output
connector value of other modules in order to establish image connections between modules.

I nt Fi el d - Contains a 64 bit integer value of type M.i nt .

Matri xFi el d - Encapsulates a Matrix4 value (Section 2.6.1, “M_Li near Al gebr a(Vector2, ...,
Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”), a 4x4 matrix of doubl e-t ype
numbers.

Noti f yFi el d - Does not represent a value; it is used to propagate field changes or to implement
buttons on user interfaces.

Qut put Connect or Fi el d - Encapsulates an output connector of a module used for connections with
input connectors of other modules in order to establish image data flows between modules. Note that
this field also contains a Pagedl mage (Section 2.3.4, “ Pagedl nage ") to manage the paged output
image of a module.

Pl aneFi el d - Encapsulates a plane described by a plane equation in 3D space.
Rot at i onFi el d - Encapsulates a rotation value described as quaternion of four floating point values.

SoNodeFi el d - Encapsulates a pointer to an Open Inventor™ node to make scene graphs available
at module outputs, e.g., for visualization purposes.

Stri ngFi el d - Encapsulates a standard string value.

Subl mageBoxFi el d - Encapsulates a Subl mageBox value (Section 2.4.2, “ Subl mageBox_") with
corners specified by integer vectors (Section 2.4.1, “I nageVect or , ImageVector”).

Subl ngBoxdFi el d - Encapsulates a Subl nageBoxd (Section 2.6.3.1, “ Subl nageBoxd ") with corners
specified by floating point vectors Vect or 6 (Section 2.6.1, “M_Li near Al gebr a(Vector2, ..., Vector10,
Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”).

Vect or 2Fi el d - Encapsulates Vector2 value (Section 2.6.1, “M.Li near Al gebr a(Vector2, ...,
Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”) .

Vect or 3Fi el d - Encapsulates Vector3 value (Section 2.6.1, "M.Li near Al gebr a(Vector2, ...,
Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”).

Vect or 4Fi el d - Encapsulates a Vector4 val ue (Section 2.6.1, “M_Li near Al gebr a(Vector?2, ...,
Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”).

Vect or 6Fi el d - Encapsulates a Vector6 val ue (Section 2.6.1, “M_Li near Al gebr a(Vector?2, ...,
Vectorl0, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”).

I mageVectorField - Encapsulates a |mgeVector value (Section 2.4.1, “l mageVector,
ImageVector”).

M.Dat aTypeFi el d - Encapsulates M_Dat aType(value Section 2.6.3.2.1, “MLDataType").

Progr essFi el d - Contains a floating point value in [0. .. 1] which can be incremented or reset to
represent a progress/done indicator.

Uni ver sal TypeFi el d - Contains an arbitrary value of any of the available ML data types
(Section 2.6.3.2.1, “MLDataType”). The managed type can be changed on runtime.

See the file M Fi el ds. h for a detailed description of the Fi el d classes.

2.1.2.2. Important Fi el d Methods

The following list gives an overview of the most important Fi el d methods:

22

Detailed Class
Overview and Usage

* void setStringVal ue(const std::string &val ue)
Assigns the string val ue to the field.

e std::string getStringVvalue() const
Returns the value of the field as standard string.

e void touch()

Simulates a change of the field value so that all attached fields or field sensors are notified. Note that
this method has no effect if notification handling (for this field or globally) is disabled.

See the file nl Fi el ds. h for further methods of the Fi el d class.

2.1.2.3. Base Field

The nl::BaseField is used to transfer arbitrary data from one module to another and to check it
there for its correct type. Do the following:

 Derive a data object from the class Base.

* Add a BaseFi el d to your module (Section 2.1.3, “ Fi el dCont ai ner).

» Use the method set BaseVal ue() to set the address of your Base object as a value of the BaseFi el d.
» Add a BaseFi el d to another (second) module and connect both fields.
 In the second module, use the get BaseVal ue() to retrieve the BaseFi el d value.

e Cast the value of the base field with nl base_cast <BaseType*>(fi el dval ue) to the target type
BaseType. If the fi el dval ue is of a different type than BaseType*, NULL is returned by the cast.

Do not forget

* to initialize each new BaseType subclass MyNewBaseFi el d with a MyNewBaseType: : i ni t d ass()
statement in the library initialization and

 to use "input" or "output" as first part of the field name to define the field as an input or output of
your module.

The following examples show how to
* derive a new class from Base,
 create a module and to export an internal Base object via a BaseFi el d,

 create a module to which any Base object can be connected, and

check whether a Base object is of a certain or correct type.

23

Detailed Class
Overview and Usage

Example 2.1. Deriving a New Class from Base

M._START_NAVESPACE

cl ass M._BASE_EXAMPLE_EXPORT MyBaseObj ect : public Base
{

public:

// Constructor which initializes the internal string.
M/BaseObj ect () { _strValue = ""; }

/1 Return value of string.
const std::string &getValue() const { return _strValue; }

/1 Set string val ue.
voi d setVal ue(const std::string &trVal) { _strValue = strVval; }

[*.00*]
private:

/! Contents of your base object, in this case a string.
std::string _strVal ue;

/1 Define the interface of the class to the runtine type systemof the M.
M._CLASS HEADER(MyBasebj ect) ;
b
M._END_NAMESPACE

/1 ***Source file: Inplenment the class interface for the runtine type system
M__START_NAVMESPACE

M._CLASS_SOURCE(MyBaseOhj ect, Base)

M__END_NAMESPACE

Example 2.2. Making a Base Object Accessible via a BaseFi el d

/1 ***Header File in class definition:
M__START_NANMESPACE

class Export MyModul e : public Mdul e
{

public:
M/Modul e: : MyModul e() ;

/] Create a base object which shall be passed to another nodule via a base field.
M/BaseObj ect obj ect ToTr ansfer;

/1! Handle field changes of the field field.
virtual void handl eNotification (Field *field);

private:

/! Pointer to a base field to which any base object can be connected.
BaseFi el d* _baseFl d;

/'l Define the interface of the class to the runtinme type systemof the M.
M._MODULE_CLASS_HEADER(MyMbdul e) ;
I

M__END_NAMESPACE

24

Detailed Class
Overview and Usage

Example 2.3. Getting a Base Object from a BaseFi el d Connection and Checking
its Type

/1 ***Source file:Construct the nodul e.

M__START NANMESPACE

M._MODULE_CLASS_SOURCE(MyModul e, Mbdul €)

/1 Construct the nodule and initialize the objectToTransfer with a test string.
MyModul e: : MyModul e() : Modul e(0, 0)
{

handl eNot i fi cati onCff ();
[*..0.0%]

/1 Initialize base object
obj ect ToTransfer. set Val ue("Test String");

/1 Add a base field and set the address of objectToTransfer as its val ue.
_baseFl d = addBase(" out put Base")
_baseFi el d- >set BaseVal ue(&bj ect ToTransfer);

>0 0]

handl eNot i fi cati onOn();

voi d MyModul e: : handl eNoti fication(Field * fields)
if (_baseFld == field){

/1 Base field has changed, get its val ue.
Base *baseVal ue = baseFl d- >get BaseVal ue();

Cast to target type and by that, check for correct type.
MyBaseObj ect* nyBO = ml base_cast <MyBasebj ect *>(baseVal ue) ;

/'l Check for validity.
if (nmyBO != NULL){

/1l Print val ue
m Debug(nyBO- >get Val ue().c_str());

}
}

M._END_NAMESPACE

2.1.3. Fi el dCont ai ner

The ml::Module is derived from ml::FieldContainer which encapsulates a list of fields for the module
(see also class _Fiel d). So the Mbdul e provides field list access, removal, search and indexing. In
a Modul e constructor, all interface parameters of the modules are added to this container. The most
important methods are:

* Field* addField(const char* nane,const char* type, const char* value, bool
createSensor = true)

Adds a new field with name nane, type t ype and value val ue (coded as a string) to the container. If
creat eSensor is true (the default), the Mbdul e of the field container will be installed as an observer
of the field so that field changes are passed to the Modul e as notification.

* Field* addField(Field* field, bool createSensor = true)

Adds the field f i el d and installs the Mbdul e as an observer if cr eat eSensor is t r ue (the default) so
that field changes are passed to the Mbdul e as a notification.

* Field *add[Bool | Int | Enum | Float | Progress | Double | String | Notify |
I nput Connect or | Qut put Connector | Base | SoNode | Di confagLi st | Vector2 | Vector3
| Vector4 | Vector6 | ImageVector | SublmageBox | SublmageBoxd | Plane | Rotation
| Color | Matrix | MDataType | Universal Type] (std::string nane, ...)

25

Detailed Class
Overview and Usage

Creates a field of the specified type with the name nane, adds it to Modul e and installs the Mbdul e as
an observer so that its handl eNot i fi cati on() method is called on field changes.

Fi el d* getField(std::string name) , Field *getField(int index)
Returns the Fi el d with name nane or at index i ndex; returns NULL if not found.
int getField(Field *field)

Searches field with address f i el d in list and returns its index. If not found, 0 is returned and a warning
is sent to the ML error handler.

int getSize()

Returns the number of fields in the container.

i nt get Num nput Connect or Fi el ds() const

Returns the number of added | nput Connect or Fi el ds.

i nt get NunQut put Connect or Fi el ds() const

Returns the number of added Qut put Connect or Fi el ds.

I nput Connect or Fi el d *get | nput ConnectorField(int i) const

Returns the i" I nput ConnectorField in the container. If not found, NULL is returned and
M__FATAL_ERRCR s sent to the ML error handler.

Cut put Connect or Fi el d *get Cut put ConnectorField(int i) const

Returns the i ™ cut put Connect or Fi el d in the container. If not found, NULL is returned and

M._FATAL_ERROR is sent to the ML error handler.
std::string getValue(const std::string &lane) const

Returns the value of a field with name nane as standard string. If the field is not found, a warning is
sent to the ML error handler and an empty string (") is returned.

std::string getVal ue(int index) const

Returns the value of a field at position i ndex in the container as standard string. If the field is not
found, a warning is sent to the ML error handler and an empty string (") is returned.

setValue(int i, const std::string &val ue)

Assigns value val ue to a field at position i ndex in container. If the field is not found, a warning is sent
to the ML error handler and no value is assigned.

set Val ue(const std::string &nane, const std::string &val ue)

Assigns value val ue to a field with name nane in container. If the field is not found, a warning is sent
to the ML error handler and no value is assigned.

set Val ue(const std::string &nane, int val ue)

Assigns the integer val ue to a field with name narme in container. If the field is not found, a warning
is sent to the ML error handler and no value is assigned.

voi d activat eAttachments()

26

Detailed Class
Overview and Usage

(Re)Enables the notification of attached fields and field sensors when field values are set or notified
by e.g. t ouch() or set *Vval ue() methods.

e void deactivateAttachnents()

Disables the notification of attached fields and field sensors when field values are set or notified by
e.g. touch() orset*Val ue() methods.

2.1.4. Image Classes for Module Development

See Section 2.3, “Image Classes” for a detailed image and subimage handling description.

2.2. Administrative Classes
2.2.1. Host

The class Host manages the entire image processing in the ML including paging, caching, parallelization
and calling any Modul e: : cal cul at e* functionality. It also provides functions such as checking and
updating module graphs as well as calculating (sub)images with get Ti | e() commands.

The Host processes a set of ML modules that are derived from the class Modul e and connected as a
directed acyclic graph.

‘ Note
Do not try to use the Host directly by using its methods or functions. All of its important
functionality is wrapped as static functions in Modul e. The Host should remain a "hidden”
part of the ML so that Host replacements and improvements do not endanger module
compatibility.

For memory-optimized calculation of an image or subimage, each ML module (derived from Modul e)
supports so-called page-based image processing, i.e., each image is divided into blocks (called
pages) which are then processed sequentially or in parallel and are finally combined to the requested
(sub)image.

Consequently, the memory usually does not hold the complete image, but only the currently used
fragments.

The page extent is defined as an image property of each ML module output. Page-based image
processing can degenerate to global image processing when the page extent is set to the extent of the
actual image. This, however, is the worst case and should be avoided.

During image processing, the ML stores as many pages as possible in the cache of the
M_Menor yManager (Section 1.3.2.2, “The M_Menor yManager and Memory Handling”) to reach maximum
performance. Repeated (sub)image requests can often be processed more efficiently by simply reusing
existing pages. The extent of pages can be controlled by the application or by the user.

Overview of image requests performed by the Host :
1. Vi ever shows image properties and data from Fil ter.
2. Fi I ter calculates results from image properties and data from Load.

The Host remains invisible to the module but processes all Vi ewer requests. Functions (e.g., getTile())
are wrapped in the class Modul e:

27

Detailed Class
Overview and Usage

Figure 2.1. Requesting an Image Pipeline with getTile()

Viewer
2\

Host::.getTile()

4. Process

an
. " "o
-

1. Request :. Host

N

Filter

)

3. Process

2. Request

N
Loader

When a tile is requested, the tile request is broken down into page request:

28

Detailed Class
Overview and Usage

Figure 2.2. Page-Based getTile() (1)

Whole image Calculated pages /\

Host::getTile()

Calculated tile

Filter -«

)

The Host calculates a tile with get Ti | e() as follows:
» Allocate memory for the tile.
» Calculate the pages that are intersected by the tile.
» For all pages:

 Already in cache? Yes => Done.

« Not in cache? => Allocate page in cache.

* Request to Filter with cal cul atel nput Subl mageBox(): Determine input area needed to
calculate the page.

« Allocate and calculate the input tiles by recursively calling get Ti | e() .
e Call cal cul at eQut put Subl mage() inFilter.

» Copy pages to tile.

29

Detailed Class
Overview and Usage

Figure 2.3. Page-Based getTile (lI)

Entire image Calculated pages
managed as list (stored in the cache)
of pages in Pagedimage
instance (placed at
module output of
“Filter”)

Tile requested from
“Viewer” (composed
from pages)

Viewer

Filter

AN

Host::getTile()

2.2.2. Menory

The ML class Menor y provides functions for memory allocation, reallocation, freeing, etc. Currently, only
basic functionality is available; however, future versions will use automatic strategies to (re)organize

and/or clean up memory (and the ML cache) to reduce or avoid out-of-memory errors.

Important

If possible, always try to use the memory handling functionality of this class when you need

to allocate your own memory.

This class can automatically handle memory errors and will support correct and safe

memory handling in the future.

. Note
You can use the nl API functionality instead of the Menory class. The nl API

uses - of course - the Menory class.

30

functionality

Detailed Class
Overview and Usage

‘ Note
See Section 5.5, “Tracing, Exception Handling and Checked Object Construction/

Destruction” [111] for alternative memory management concepts.

The following class functionality is currently available:

1.

static void* allocateMenory(Muint size, MMenoryErrorHandling handl eFail ure);
Allocates a memory block of si ze bytes.

static void* reallocateMenory(void* ptr, Muint size, MMenoryErrorHandling
handl eFai | ure);

The memory block pointed to by pt r is resized and copied so that it has at least si ze bytes.
static void freeMenory(void* ptr);

Frees memory that has been allocated with any Menory function. NULL pointers may be passed
safely; they are simply ignored.

static void* duplicateMenory(const void *ptr, Muint size, MMenoryErrorHandling
handl eFai | ure);

Copies the memory pointed to by sr ¢ of size si ze in a newly allocated buffer which must be freed by
the caller with f reeMenor y() . If pt r is passed as NULL, NULL is returned without any error handling.

static char* duplicateString(const char *ptr, M_Menor yEr r or Handl i ng
handl eFai | ure);

Copies the passed null-terminated string st r in a newly allocated buffer which must be freed by
the caller with fr eeMenory() .

‘ Note
Always use functions of the class Menory in ML contexts so that the ML can optimize

memory usage and provide safer memory allocations.

The parameter handl eFai | ur e determines the function behavior in error cases:

1.

M__RETURN_NULL

If memory allocation fails, NULL is returned without error handling. The programmer must take care
of the error.

M__FATAL MEMORY ERROR

If memory allocation fails, M._PRI NT_FATAL_ERROR() with error code M._NO_MEMORY is called; NULL
is returned if ML_PRI NT_FATAL_ERROR() has been returned. The programmer does not need to
take care of the error case, because the ML handles it.

M._ THROW NO_NMEMORY

If memory allocation fails, t hr om{ ML_NO_MEMORY) is executed. The programmer could implement
something like

31

Detailed Class
Overview and Usage

Example 2.4. Using Exceptions when Allocating Memory with
M_Thr owNoMenor y

M__START_NAVESPACE

try {

/1 Try to allocate...

Menory: : al | ocat eMenory(1000, M._THROW NO MEMORY) ;
z:at ch(M_Er r or Code)

/! Handle error if nenory could not be all ocated.

}

M._END_NAMVESPACE

Note that these error handling cases will only occur if the Menory class functionality has no chance to
allocate the required memory. In future versions, the following might happen: The first internal allocation
fails, but the Menory class clears the ML cache and successfully retries memory allocation. In those
cases, none of the above error cases will be used.

2.2.3. Base

The ml::Base class is a base class of many ML classes and is designed for all objects passed
between different ML modules via the so-called Base fields. Thus it is possible to establish transfer of
arbitrary data types between modules.

2.2.4. The Runtime Type System

The ML provides a so-called Runtime Type System for managing all important classes available in the
module database and in the ML.

e Runtine

This class contains the global runtime type system of the ML. It manages a dictionary of runtime types
and can create and remove runtime types. This class only contains static components and must be
initialized with i nit() and destroyed with destroy().

* Runti meType

This class contains runtime-generated type and inheritance information of associated classes. To
track this information, the macros defined in nl Runti meSubCl ass. h have to be inserted in the
declaration and implementation of the associated classes.

e RuntinebDi ct

This class manages a set of instances of the class Runt i neType. The class Runt i me uses one global
instance of this class for the runtime type system of the ML.

The file nl Runti meSubd ass. h also includes important and frequently used macros.
* M__BASE | S A(base, type)

This macro is used to check whether the given Base pointer is of the expected type:
M._BASE | S _A(base, Marker Exanpl e).

Note
&
The macro M_BASE IS A should be replaced by the explicit cast

m base_cast <BaseTpe*>(obj ect) introduced in the ML version since MeVisLab 2.0.

32

Detailed Class
Overview and Usage

One of the following macros in the header implementation of a class derived from Base must be used.
Each of these macros implements the interface to the runtime type system of the derived class.
e M._CLASS HEADER(cl assNane)

This macro must be included in the header of a non-abstract class to declare some additional methods
described below.

e M._MODULE CLASS HEADER(Modul ed assNane)

This macro must be included in the header of a class derived from the class Mbdul e to declare some
additional methods described below.

e M._ABSTRACT_CLASS HEADER(cl assNane)

This macro must be included in the header of an abstract class to declare some additional methods
described below.

One of the following macros in the source file implementation of a class derived from Base must be used.
Each of these macros implements the interface to the runtime type system of the derived class.
e M._CLASS SOURCE(cl assNane, parent Nane)

This macro must be included in the source file of a non-abstract class to implement the methods
declared with M__CLASS HEADER.

e M._MODULE CLASS SOURCE(cl assNane, parent Modul e)

This macro must be included in the source file of classes derived from the class Mbdul e to implement
the methods declared with M._MODULE CLASS HEADER. Mbdul e implements protected constructors
and assignment operators to avoid the assignment of Modul e modules to themselves. The normal
M__CLASS_SOURCE macros cannot be used.

* M._ABSTRACT_CLASS SQURCE(cl assNane, par ent Nane)

This macro must be included in the source file of an abstract class to implement the methods declared
with M._ABSTRACT _CLASS HEADER.

e M._MODULE CLASS SOURCE_EXT(cl assNane, parent Modul e, superd assConstructs)

This macro is an alternative to M._MODULE CLASS SOURCE if the constructor of the
parent Modul e does not have two parameters or if other members need to be initialized
(e.g. constants). The third parameter superd assConstructs permits the specification of
the correct constructor call of the superclass, e.g., M._MODULE_CLASS SOURCE EXT(MFilter,
MyPar ent Modul e, : MyPar ent Modul e()) does not pass parameters for the superclass constructor
that is used in the normal Modul e.

If you need to pass more complex expressions as third parameters, such as superclass or member
initializers (as a comma-separated list, for example), use the following trick:

33

Detailed Class
Overview and Usage

Example 2.5. How to Use the Macro M._MODULE_CLASS SOURCE_EXT

/1 Stuff to do for base cl asses when copy constructor is inplenmented
/1 (which is done in a macro to have a private and not an executable
/'l copy constructor).

#define _I NIT_STUFF : Mbdul e(0,0), _initMenberl1(initValuel), \
_initMenber2(initVal ue2)

/1 This macro declares some automatically generated functions and net hods
// for the runtine systemand for the initialization of this class. It

/1 inplements nore el aborated superclass and nenber initializers given

/1 by _I NI T_STUFF.

M._MODULE_CLASS_SOURCE_EXT(MyNewMbdul e, Mbdul e, _I NI T_STUFF)

#undef _I NI T_STUFF

See also the file nlLibrarylnitMacros.h which does not directly belong to the runtime type
system but which contains macros for the initialization after runtime linking to the library. It permits the
implementation of a function in a library where module classes and runtime types can be initialized
directly after linking to the library.

2.2.5. Debugging and Error Handling Support

See Chapter 5, Debugging and Error Handling for detailed information on concept, classes and macros
for error handling and debugging.

2.3. Image Classes

2.3.1. | mageProperties

The m::1mageProperties class describes the basic image properties

» 6 dimensional extent as a ImageVector (Section 2.4.1, “I mageVect or , ImageVector”),

* the voxel data type (M_Dat aType),
» the minimum and maximum limits of voxel values, and

Images are rectangular grids without gaps, and all voxels are of identical extent and types. The six
image dimensions in the ML are interpreted as the three spatial dimensions (x, y and z), a color extent
(c dimension), a time extent (t dimension) and a user (u) dimension. For example, a dynamic sequence
of three dimensional color images that exist in different image acquisitions or reconstructions can be
handled by the ML as a single image object.

See i I mageProperties. h inproject ML for more information.

2.3.2. Medi cal | mrageProperties

The nl::Medicall mageProperties class is derived from | mageProperties (Section 2.3.1, “
| magePr operti es). It contains additional information specialized for medical data sets:

» avoxel size,

* a 4x4 transformation matrix (world matrix) to specify 3D transformations (e.g., for registration
purposes),

» an anonymous reference to a list that stores DICOM tag information if the input file(s) have been in
DICOM file format,

34

Detailed Class
Overview and Usage

e color channel information (as strings) for the 4th dimension. The string list
std::vector<std::string> &get CDi nensi onl nf os() describes the significance for the channels
e.g., "RED", "GREEN", and "BLUE" for channels 0, 1 and 2 when the RGB color model is used,

» time point information for the t extent of the image. The list std::vector<DateTi ne>
&get TDi nensi onl nf os() contains this information for each time point,

 u dimension information given as a list accessible with std::vector<std::string>
&get UDi nensi onl nf os() . The stored strings describe the subimages with different u components.
Often, strings such as "CT", "MR", etc. are stored.

‘ Note
For the c (color) and u dimension, there is a set of constants available describing the image
contents, such as M__RED, M._BLUE, M__SATURATI ON, M__HUE for the ¢ dimension, or M__CT,
M._MR, M__PET for the u dimension (see n Dat aTypes. h). The components of the list for
the t dimension are given by the class Dat eTi me (see mni Dat eTi ne. h).

See ml I mageProperties.h inproject ML for more information.

2.3.3. | magePr opert yExt ensi on

m : : | magePr opert yExt ensi on is used to append additional and user-defined property
information to an ML image. This class is independent of the classes | nageProperties
and Medi cal | mageProperties (see Section 2.3.1, “ |InmageProperties " and Section 2.3.2, *“
Medi cal | mageProperties_"). It is an abstract class that serves as a base class from which
an application or programmer can derive new properties. These properties are added to the
| magePr oper t yExt ensi onCont ai ner that is a member of the class Medi cal Properti es.

A derived ImagePropertyExtension must meet some requirements:

It mustimplement the copy constructor and assignment operator correctly, because objects of its type
are copied from one image to another.

* ltrequires a virtual cr eat eCl one() method that returns a copy or a new instance of the class so that
a copy of the correct derived class is returned.

* It must implement ML runtime typing and must be registered in the runtime type system of the ML in
such a way that the ML can create new instances of the user-defined class only from its name and
compare class types.

It mustimplement set and get methods to set/get the property value as a string, because ML modules
must be able to store/load property settings in/from a file.

« It must implement equality and inequality operators to compare instances.

Most methods to be implemented are pure virtual in the base class | ragePr oper t yExt ensi on, hence
compilation will not work without implementing them

The following programming example demonstrates how to implement a newly derived
| magePr opert yExt ensi on:

#i ncl ude "nl Modul el ncl udes. h"

M__START_NANMESPACE

/1! 1 nplement a | nmagePropertyExtensi on object which can be passed to the M.

cl ass MODULE_TESTS_EXPORT Owmnl magePr opert yExt ensi on : public | magePropertyExtension
{

public:

/1! Constructor.

35

Detailed Class
Overview and Usage

Owmnl magePr opert yExt ensi on() : | magePropertyExt ensi on()

{
_extInfoString = "New magel nfosString";

}

/1! Destructor.
virtual ~Oanl magePropertyExtension() { }

/1! 1 nplement correct copy construction.

Owmnl magePr oper t yExt ensi on(const Oanl magePr oper t yExt ensi on &ori gQbj)
| magePr oper t yExt ensi on(ori gbj)

{
_extInfoString = origQObj._extlnfoString;

}

/1! I nplement correct assignnent.
Omnl magePr oper t yExt ensi on &oper at or =(const Ownl magePr oper t yExt ensi on &ori gbj)

if (&rigj !'=this) { _extInfoString = origoj._extlnfoString; }
return *this;

}

/1! Inplement pure virtual equality operation to work even on base cl ass pointers.
virtual bool equal s(const |nmagePropertyExtensi on &ext|nmageProps) const

if (extlnmageProps. get Typeld() == getd assTypeld()) {

/'l Types are equal, conpare contents.
return _extlnfoString == ((Oanl nagePropertyExtension&) (ext!| mageProps))._extInfoString;

} else {
return false; // Types differ, thus objects also differ.
}

}

/1! Creates a copy of the correct derived object (for conparisons / runtine type determ nation).
virtual |magePropertyExtension *created one() const

{

return new Oml magePr opertyExt ension(*this);

}

/1! Returns value of property as string.
virtual std::string getVal ueAsString() const
{

return _extlnfoString;

}

/1! Set value of property fromstring val ue.
virtual M.ErrorCode setVal ueFrontring(const std::string &str)
{

_extInfoString = str;
return M._RESULT_OX;
}

private:

/1! The string values used as additional inage property.
std::string _extInfoString;

/1! Inplements interface for the runtinme type systemof the M.
M__CLASS HEADER(Omnl magePr opert yExt ensi on)
I

M__END_NAMESPACE

Implement the C++ part of the class interface to the runtime type system:
M__START NANVESPACE

/1! Inplenents code for the runtine type systemof the M.
M__CLASS_SOURCE(Omnl magePr opert yExt ensi on, | magePr opert yExt ensi on);

M.__END_NAMVESPACE

Register the class to the runtime type system of the ML when the .dll/.so file is loaded. This is typically
done in the InitDIl file of the project:
M._START NANVESPACE

int MyProjectlnit()
{

36

Detailed Class
Overview and Usage

Omnl magePr opert yExt ensi on: :initd ass();
}

M__END_NAMESPACE

In the method calculateOutputimageProperties of your ML module, you can add a copy of your own
image property to the output image:

M._START_NAVESPACE

MyModul e: : cal cul at eCut put | mageProperties(int outlndex, Pagedl nage* outl mage)

{
Omnl magePr opert yExt ensi on nyNew ngPr op;
out | mage- >get | nagePr oper t yCont ai ner () . appendEnt r y(&y New ngProp, true);

}

M._END_NAMVESPACE

See nl I magePropertyExtension.h and mnl | magePropertyExt ensi onCont ai ner. h in project ML
for more information.

2.3.4. Pagedl| nage

The class nl:: Pagedl mage is dedicated to managing paged images in the ML and to representing
image outputs of ML modules. See ni Pagedl mage. h in project ML.

The ML mainly works with pages and tiles. Since ML does usually not process entire images, it is
necessary to break them down into smaller fractions of identical extent, the so-called pages. Pages
can easily be buffered, cached and processed in parallel without spending too much memory or time.
Caching in the ML works exclusively with pages. Moreover, only the pages that overlap with the actually
requested image region must be processed. All other pages are not processed. Common page extents
are, for example, 128x128x1x1x1x1 voxels. However, they may also have a real six-dimensional extent
as do all images in the ML. Often, other image fractions (also called tiles) which do not have standard
page extents are needed. Tiles are usually composed from pages and are used by the application or
as input for image processing algorithms. In the ML, tiles are usually only temporary, i.e., the ML does
not cache tiles.

For algorithms where a page-based implementation is difficult, classes such as Vi rtual Vol une,
Bi t1 mage or Menoryl mage provide special interfaces to simplify efficient implementations. See
Section 2.3.7, “ Vi rtual Vol une ", Section 2.3.6, “ Bi t | rage " and Section 2.3.8, “ Menor yl nage " for
more information.

2.3.5. Subl mage/TSubl nage

m :: Subl nage is an important class representing image and subimage buffers. It is used to manage,
copy, etc. chunks of voxel data. It contains fast data access methods. See nl Subl nage. h .

m : : TSubl mage is the typed version of Subl mage which permits typed data accesses. See
m TSubl nage. h in project ML.

m :: TSubl mageCursor and mi :: Const TSubl nageCur sor are cursor classes that allow access to a
given TSublmage using cursor positioning and movement.

The Subl mage class represents a rectangular 6D image region with linearly organized memory. It offers:

» Methods for setting/accessing the datatype, the box defining the subimage region, the source image
extent and the valid region (which is the intersection of the source image extent and the box).

* A pointer to the memory data containing the image data as a void pointer. Alternatively the data can
be stored as a M_Menor yBl ockHandl e to manage data via the M_Menor yManager .

« With this class, the Host manages and encapsulates rectangular image regions (e.g., for pages, tiles,
cached image results) and passes them to the image processing algorithms. The Host usually does
not need information about the actual data.

37

Detailed Class
Overview and Usage

e The typical image processing methods in the ML are located in overloaded methods of
Modul e: : cal cul at eQut put Subl mage() . In these methods, the untyped memory chunks given as
Subl mage are usually wrapped again to typed subimages. See TSubl mage for more information.

» The type of the image data in memory is handled via a void pointer; the type, however, is managed as
an enumtype to support typed access in derived classes (see TSubl nage). Consequently, Subl mage
does not support typed access to image voxels.

* The typed access to voxels is implemented on top of this class as the template class TSubl mage.

2.3.5.1. Example

The following paragraphs show some typical use cases of the class Subl nage.

This creates a Subl mage instance that provides access to a chunk of double data of 16 x 32 x 8 x 1 X
1 x 1 voxels given by the pointer dat aPt r :

Subl mage subl ngBuf (Subl mageBox(| nageVect or (0, O,
| mageVect or (15, 31, 7
M.doubl eType,
dataPtr);

The caller is responsible for the data chunk to be sufficiently large.

This first fills the entire subimage with the value 7. 7. Then the rectangular region outside the area given
by (3,3,3,0,0,0) and (5,5,5,0,0,0) is filled with the value 19. 3:

subl mgBuf . fill (7.7);

subl mgBuf . fil | Bor der sWt hLDoubl eVal ue(Subl mageBox(| mageVector (3, 3, 3,0,0,0),

| mgeVector(5,5,5,0,0,0)),
19.3);

Assuming another Subl mage object srcSubl ng, the overlapping areas can simply be copied (and if
necessary, cast to the target type) into subl ngBuf , and optionally rescaled with value 0.5:

subl mgBuf . copySubl mage(srcSubl ng, Scal eShiftData(0.5, 0));

Untyped data access to the voxel data is available for example at position (1,2,3,0,0,0) with

voi d *voxPtr = subl ngBuf. get | nagePoi nter(| nmageVector(1,2,3,0,0,0,0));

For typed data management, the class TSubl mage can be used almost in the same way:

TSubl mage<M_.doubl e> subl ngBuf T(Subl mageBox(| negeVect or (0, O,
| mageVect or (15, 31, 7
M.doubl eType,
dataPtr);

The class TSubl mage, however, provides a number of typed access functions, such as

M.doubl e *voxPtrT = subl ngBuf T. get | magePoi nter (| mageVector (1, 2,3,0,0,0,0));
*voxPtrT = 29. 2;

The untyped Subl mage and the templated TSubl nage classes also provide a variety of other methods
to manipulate, copyi, fill, allocate and delete data, or to check for a certain value, or to retrieve statistical
information such as minimum or maximum. They are powerful classes that can be used in many contexts
when memory or voxel buffers have to be managed.

See files m Subl mage. h and nl TSubl nage. h for more information.

2.3.6. Bitlmge

In the page-based image processing concept of the ML, Boolean data types are not available (nor are
they planned).

38

Detailed Class
Overview and Usage

The Bi t | mage class can be used as an alternative.

The following set of operations is available for this class type:

full 6D support in all methods,

 set, get, clear and toggle bits at coordinates,

« filling (=clearing or setting) and inverting subimage boxes,
» copying from/to subimages (with thresholding),
 saving/loading to/from file,

* position checking,

 creating downscaled Bi t | mages,

 creating Bi t | mages from image data where first the mask area is determined and then the smallest
possible Bi t | mage is returned,

e cursor movement in all dimensions,

» exception handling support for safe operations on images.

2.3.7. Virtual Vol une

The nl::Virtual Volune andthe nil::TVirtual Vol une classes manage efficient voxel access to
the output image of an input module or to a 'standalone’ image.

So it is possible to implement random access to a paged input image or to a pure virtual image without
mapping more than a limited number of bytes. Pages of the input volume are mapped temporarily into
memory when needed. If no input volume is specified, the pages are created and filled with a fill value.
When the permitted memory size is exceeded, older mapped pages are removed. When pages are
written, they are mapped until the virtual volume instance is removed or until they are explicitly cleared
by the application. Virtual volumes can easily be accessed by using set Val ue and get Val ue. These
kinds of access are well-optimized code that might need 9 (1D), 18 (3D) and 36 (6D) instructions per
voxel if the page at the position is already mapped.

A cursor manager for moving the cursor with noveCursor* (forward) and rever seMoveCur sor*
(backward) is also available. set CursorVal ue and get Cur sor Val ue provide voxel access. Good
compilers and already mapped pages might require about 5-7 instructions. So the cursor approach will
probably be faster for data volumes with more than 2 dimensions.

All the virtual volume access calls can be executed with or without error handling (see last and default
constructor parameters). If ar eExcepti onsOn is t r ue, every access to the virtual volume is tested and

if necessary, exceptions are thrown that can be caught by the code calling the virtual volume methods.
Otherwise, most functions do not perform error handling.

‘ Note
Exception handling versions are slower than versions with disabled exceptions. However,
this is the only way to handle accesses safely.

Tip

This class is the recommended alternative to global image processing algorithms.

39

Detailed Class
Overview and Usage

2.3.7.1. Code Examples

The following code gives an example of how to use the Vi rt ual Vol une class:

Example 2.6. How to Use the Vi rt ual Vol une Class

Header:

Vi rtual Vol une *_virt Vol ;

Constructor:

_virtVol = NULL;

Create/Update the virtual volume in cal cul at eQut put | magePr operti es() and invalidate the output
image on errors, so that cal cul at eQut put Subl nage() is not called on bad virtual volume later.

if (_virtVolume !'= NULL) { delete _virtVolune; }

_virtVolume = new Virtual Vol une(this, 0, getlnputlmage(0)->getDataType());

if (!_virtVolume || (_virtVolune && ! _virtVolunme->isValid())){
out | mage- >setlnvalid(); return;

When you do not want to use a 'standalone’ virtual volume:
_virtVolume = new Virtual Vol une(l mageVect or (1024, 1024,1,1,1,1), 0, Muint8Type));
if ((_virtVolume == NULL) || (_virtVolume && !_virtVolune->isValid())){

out | mage->set Il nvalid(); return;

}

Example of how to access image data directly: cal cul at eQut put Subl mage()

/] Create wapper for typed voxel access.
TVi rt ual Vol ume<DATATYPE> vVol (*_vi rt Vol une) ;

| mgeVect or pos(7,3,0,0,0,0);
DATATYPE val ue;

vVol . set Val ue(pos, val ue); /] Sinple setting of an arbitrary voxel .
val ue = vVol . get Val ue(pos) ; /1 Reading of an arbitrary voxel.
vVol . fill (out Subl ng- >get Box(), value); // Fill region with val ue.

/1 Now copy valid region of virtVolune to out Subi ng.
vVol . copySubl nage(* out Subl ng) ;

Example of how to access image data via a cursor: cal cul at eQut put Subl mage():

/'l Create wapper for typed voxel access.
TVi r t ual Vol ume<DATATYPE> vVol (*_virt Vol une);

| mageVect or pos(7,3,0,0,0,0);
DATATYPE val ue;

vVol . set Cur sor Posi ti on(pos); // Set cursor to any position in volune.

vVol . noveCur sor X() ; /1 Move cursor >F<orward

vVol . noveCursor Y(); /1 in (positive) X, Cand U direction.

vVol . noveCursor Z() ;

vVol . rever seMoveCur sor T(); /1 Move cursor >B<ackwards in (negative) T
vVol . rever seMoveCur sor Z() ; /1 and Z direction.

val = vVol . get CursorVal ue(); /1 Reading voxel bel ow cursor.

vVol . set Cur sor Val ue(10); /1 Set voxel value below cursor to 10.

Additionally, the following helper routines are available:
/1 Fill region of virtual volune with a certain val ue.

void fill (const Subl mageBox &box, DATATYPE val ue);

/'l Copy region fromthe virtual volune into a typed subing.

voi d copyToSubl nage(TSubl nage<DATATYPE> &out Subl ng) ;

40

Detailed Class
Overview and Usage

/! Copy a region froma typed subing into the virtual vol une.

voi d copyFronBubl mage(TSubl mage<DATATYPE> &i nl ng,

const Subl mageBox &box,
const | mageVector &pos);

There are also some routines to get the boxes of the currently written pages. It is also possible to read/
write the data of the written pages directly.

Note

The class Vi r t ual Vol une contains data structures for data management and table caching;
its creation is expensive in comparison to the TVirtual Vol ume class which is only a
"lightweight" access interface that can rapidly be created and destroyed on top of a
Vi rtual Vol ume object. In the case of algorithms which implement template support
for arbitrary data types it is recommended to create an untyped Virtual Vol une as
class member and a TVi rt ual Vol une class in cal cul at eQut put Subl mage for maximum
performance.

However, there are also convenience constructors of the TVi rtual Vol une class which
internally create the Vi rt ual Vol une instance automatically ; these constructors are more
expensive and should not be used on each calculateOutputSublmage call. Nevertheless
they can be useful when a class works only with a fixed data type or without templates.

Using virtual Volume instances that create untyped virtual volume instances automatically.

Creating a TVi rt ual Vol une with a convenience constructor. It creates a Vi rt ual Vol une internally. It
provides float data access to the input image 0, even if the input image is of another type. Note that
the connected input image must be valid:

/'l Create a typed Virtual Volune frominput connector 0 of
/1 this Mdule with voxels of type float directly w thout
/'l creating the untyped Virtual Vol une manual | y.

TVirtual Vol ume<fl oat> vVol (this, 0);

2.3.7.2. Using Exceptions for Safe Vi r t ual Vol une Usage

The standard usage of the Vi rt ual Vol une and the TVi rt ual Vol une classes does not include error
handling. For safe usage, ar eExcept i onsOn ==t r ue is passed as a parameter to the constructor, and
errors will throw the following exceptions:

Note that ar eExcept i onsOn ==t r ue degrades voxel access performance.

« M._OUT_OF_RANGE

M. Error

Code

M_Er r or Code is thrown if cursor positioning or voxel addressing tries to access invalid image regions.
The exception leaves the virtual volume, the cursor position, the voxel content, etc. unchanged and
the invalid flag of the virtual volume is not set. The call is just terminated and ignored, i.e., The call
can continue and accesses to other voxels are attempted.

« M._NO MEMORY

MLEr r or Code is thrown if an allocation fails because of insufficient memory. The valid virtual volume
is invalidated, i.e., Its valid flag is cleared.

« M__BAD DI MENSI ON

M_Er r or Code is thrown if the image data extent is invalid. This could indicate a programming error or
invalid input image data. The valid virtual volume is invalidated, i.e., Its valid flag is cleared.

41

Detailed Class
Overview and Usage

M__BAD DATA TYPE

M.Error Code is thrown if an invalid image data type is encountered. This could indicate a
programming error or invalid input image data. The valid virtual volume is invalidated, i.e., Its valid
flag is cleared.

Other exceptions that result from page request failures could also be thrown. They are usually
returned, when a get Ti | e command that attempts to request data from an input image fails.

If the ar eExcepti onsOn == f al se, ho exception is thrown and many errors are handled by calling the
ML_PRINT*() error macros and terminating the function/method. The virtual volume instance will be
invalidated. Invalid voxel access or memory failures will destroy the program state or cause unknown
exceptions.

2.3.7.3. Performance Issues on Vi rt ual Vol unme Usage

Voxel access performance is best when the page extents of input pages are powers of 2.

Working locally on virtual volumes is generally faster than jumping randomly through the image,
because less pages must be swapped.

Coordinate-specific voxel access performance is better for images of a lower dimension, because
less calculations have to be performed.

If the virtual volume wraps a paged input image, voxel access is not permitted when the input
connection or the module has become invalid.

The virtual volume must not be used in parallel in cal cul at eQut put Subl nage() calls,
because getVvalue and setVal ue methods potentially call getTile*() which would start
recursive multithreading. Therefore be sure that multithreading remains disabled in areas where
Vi rtual Vol ume or TVi rt ual Vol unme use cal cul at eQut put Subl mage() or you must make accesses
to them thread-safe by using critical sections, semaphores or similar concepts. Even if no paged
image is used as an input, write access is not capable of multithreading due to performance reasons.

If an image has n dimensions (e.g., 3), components >= n in cursor positioning and voxel access are
simply ignored for performance reasons and do not cause errors if they are set even if this means
that the cursor was outside the image.

In some cases, the virtual volume approach is slower than a global approach.
Consider the following reasons:

< The virtual volume approach is completely page-based, i.e., it fits perfectly in the optimized page-
based concept of the ML.

« The virtual volume approach only requests image areas of the input image that are really needed
(processing on demand) so that less input image regions are calculated. Global approaches always
request the entire input image which is often expensive to calculate.

« The virtual volume approach usually locks less memory than the global approach, so the operating
system must swap less memory, and other modules can work faster.

* Next versions will not duplicate memory as their own tiles (as a global approach needs to), but will
directly try to use ML cache pages.

2.3.8. Menoryl mage

Menor yl mage can be used for algorithms that need fast random access to entire images, especially if
they work “against* paging e.g., Ort hoRef or mat , MPR, MentCache.

42

Detailed Class
Overview and Usage

Important

« A Menoryl mage object is always buffered at the output of the connected input module.

e Try to avoid this approach! It only supports limited image sizes that depend on the
available memory! See Section 4.3.3, “Vi r t ual Vol une_Concept” for information on how
to avoid this concept.

Properties:

» The Menoryl mage object is part of each Pagedl mage, i.e., there is one (usually empty and unused)
Menor yl mage object per output.

* If possible, all connected ML modules copy or reference data directly from the Menor yI mrage object.

There are two ways of how to use the memory image at a module output:

» The module completely controls the Meror yI mage object at the image output (reset, clear, set, resize,
update...). Thus connected modules benefit (see Version 1).

* The entire input image is requested as one page (with the note to buffer it as a memory image).
Further requests (also from other modules) will be answered immediately by passing the pointer to
the memory image or by copying page data from it (see Version 2).

» Version 1: The module controls the memory image at the output:

Example 2.7. Controlling the Menor yl mage by the Module
/'l Constructor: Enables the operator control of the nenory output at output O.

get Qut put | mage(0) - >get Menoryl mage() . set User Control | ed(true);

/| Resize and copy input inmage into the nenory inmage output:

M_Error Code result = get CQutput | nmage(0)->get Menoryl mage() . updat e(
get | nput | mage(0),
get | nput | mage(0) - >get | mageExt ent (),
get | nput | mage(0) - >get Dat aType());

if (ML_RESULT_OK !=result) { handl eErrorHere(result); }

/| Get data pointer and draw into nenory inmage at output:

dr awSonet hi ngsl nt ol ng(get Qut put | nage(0) - >get Menoryl mage() . get | nage());

» Version 2: The memory image is cached at the output of preceding module:

Example 2.8. Using/Requesting a Menor yl mage of the Predecessor Module

/1 Request input tile caching in output of input nodule
voi d Menoryl nTest: : cal cul at eQut put | magePr operti es(i nt outlndex, Pagedl mage* outl mage)

{

out | mage- >set | nput Subl mageUseMenor yl mage(0, true);

}
/'l Request input tile of size of input volume (other sizes cause warnings!)

Subl mageBox Menoryl nTest: : cal cul at el nput Subl mageBox (int /*inlndex*/,
const Subl mageBox & /*out Subl ngBox*/,
int /*outlndex*/)
{
return getl nputl nage(0)->get BoxFr om nageExt ent () ;
}

43

Detailed Class
Overview and Usage

Advantages:

All connected modules can benefit from the memory image, because it is part of the image output.

It is easy to implement and fast; it does not break the paging concept.

Disadvantages:

The image size is limited by the size of the largest free memory chunk.
It cannot/should not be used in bigger networks or applications.

It must map the entire image and blocks large memory areas for a long time.

2.4. Helper Classes

2.4.1. | mageVect or, ImageVector

The m::1nmageVector class manages a 6D point/vector with 6 components x, y, z, c, t, u of the type
M.i nt . It is the main class used for voxel positions, image extents, box corners or page extents. The
typical (integer) vector arithmetics is available as well as minimum and maximum component search,
lexicographical comparison, stride operations and component-wise multiplication for voxel addressing,
etc. It offers different template specializations with 16, 32 and 64 bit integer components, because most
ML image and voxel addressing is done by this class. A | mageVect or works with 64 bit integers to
support very large image addressing and should be used in all image processing modules unless there
are clear reasons for using specialized versions. The most important methods are:

operators +, -, *, /, <<, >>,[]
Operators as they are defined on integers, applied component-wise.
get Strides()

If a | rageVect or is interpreted as an image extent, this method returns another | negeVect or with
voxel offsets (usually called strides in such a context). To get from one voxel position to a neighbor
position, e.g., to y, the corresponding stride get Stri des().y has to be added. The y strides are
usually identical with the x extent of the image, the z stride with the number of x extent multiplied by
the y extent, the ¢ stride with x extent*y extent*z extent , etc. Strides are typically needed for very fast
voxel positioning with indices into images.

get Vect or Posi t i on(of f set Pos)

If the I mageVect or is interpreted as the extent of an image and of f set Pos as an index into the
image, get Vect or Posi ti on() returns the position of the voxel as | mageVect or .

get Ext Di nensi on()

If the 1 nmageVector is interpreted as the extent of an image, this method returns the highest
I mageVect or component that cannot be used to get the real dimension of an image.

hasNegat i veConp()

This method returns t r ue if any component is negative, otherwise it returns f al se. This method can
be used to check whether the position might be an invalid image coordinate (negative components
are not used for voxel addressing).

al | Bi gger Zero()

This method returns t r ue if all components > 0, otherwise it returns f al se.

44

Detailed Class
Overview and Usage

» Constructors, set and get methods to initialize the | mageVect or in different ways, maximum/minimum
component search, etc. are available.

Please refer to file nl Vector. h in the project MLLinearAlgebra for more information (Section 2.6.1
“MLLi near Al gebr a(Vector2, ..., Vector10, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”).

2.4.2. Subl mageBox

The nl:: Subl mageBox class manages a rectangular 6D box given by two corners that are specified
by the Vect ors v1 and v2. It permits volume intersection, calculation, etc. Subl mageBox is available in
16, 32 and 64 bit template specializations (like the class | nageVect or). Use Subl mageBox without a
number for all normal ML code. See mnl Subl mageBox. h in the project ML. A comparable class with
6D float vector is available as Subl mageBoxd in file m Subl mageBoxd. h .

Important

» Both corners of the box are considered to be inside the box, so a Subl mageBox from
(13,12,10,0,0,0) to (13,12,10,0,0,0) contains exactly one voxel.

» The SublmageBox is empty if any of the v1 components is bigger than the corresponding
v2 component.

Figure 2.4. SublmageBox
vl =(3,1,0,0,0,0,0)

v2 = (6,2,0,0,0,0,0)

This class offers a set of useful methods, e.g.:
* get Size()

Returns the number of voxels in the subimage region, i.e. the product of all extents if this is not empty;
otherwise 0 is returned.

* i sEnpty()
Returns t r ue if the box is empty; otherwise f al se is returned.
e intersect(loc2)

Returns the regions that overlap with subimage regions | oc2 as a Subl mageBox. In case of non-
overlapping boxes, the returned box is empty.

e contains (pos)
Returns t r ue if pos is within box; otherwise f al se is returned.

* getExtent ()

45

Detailed Class
Overview and Usage

Returns a vector with the extent of the box in all 6 dimensions (see Section 2.4.1, “I mageVect or ,
ImageVector”).

* translate(shift)
Translates the box by the vector shift.
* get3DCorners(...)

Returns all eight corners of the box as vectors (see Section 2.4.1, “I mageVect or , ImageVector”).

Please refer to file m Subl mageBox. h for more information.

2.5. APIs and Classes for Interfaces and
Voxel Type Extensions

2.5.1. How Applications and the ML Work

An easy way to use the ML is just to link the C-API (Section 6.3, “mIAPIL.h") of the ML. Functions are
available to create and delete modules, to set and get their parameters (fields), to connect them and
to request images from their outputs.

Example:

Requesting image data from a module causes the following (as shown in Fig. 2.4):

» The Host starts to determine the image areas needed by Vi ewer and breaks the area down into pages.
» For each page, the Host determines the input data the Fi | t er needs for output calculation.

» The Loader requests the data (as a set of pages) and composes the correct input data forthe Fi | t er.
» The Filter is called to calculate the output page.

e« When Fi | t er has calculated the correct output pages, they are composed to the correct image data
to be used by the Vi ewer .

» All pages of all modules are stored in the cache of the M_Meror yManager if there is enough space.

2.5.2. The C-API

The C-API (C-Application Programming Interface) is an interface to most C++ functionality of the ML
which can be linked in standard C mode. Thus programs and applications not written in C or C++ can
link and use the ML if they support standard C linkage. Also, the C-API is more stable, because it is
less frequently modified than the C++ interface.

2.5.3. Registering and Using Self-Defined Data Types

The ML supports a set of standard data types for image voxels (8,16,32,64 bit integer types and float,
double) (see Section 6.5, “mITypeDefs.h”) as well as so-called extended data types (see Chapter 7,
Registered Voxel Data Types and Section 7.5.5, “Implementing a New Voxel Data Type by Deriving
from MLTypelnfos”) which permit the usage of self-defined or augmented data types. It is not necessary
to recompile the ML for these data types, but modules might need to be adapted depending on how
they were written. A structure describing the data type, its properties, and operations can be registered
in the ML to activate a new type.

46

Detailed Class
Overview and Usage

2.6. Tools

The following sections describe classes and toolboxes, and contain a lot of useful information for
advanced ML programming.

2.6.1. M_Li near Al gebr a(Vector?2, ..., Vectorl10, Vector16,
Matrix2, , ..., Matrix6, quaternion, ImageVector)

This project contains some basic classes for simple vector and matrix arithmetics as well as for
quaternion support.

2.6.2. MLUtilities

This project contains some basic classes, files and interfaces used by the ML which are not directly
related to image processing. Some of them are explicitly explained in other chapters of this document.

1. DateTine
Defines the class Dat eTi ne for storing and processing date and time values.
2. mErrorMcros. h

This file contains a number of macros for error handling, checking and tracing that should be used
in all ML code. These macros are essential for source code quality control and for many other
checks as well as for error tracing and reporting, and for exception handling.

3. ml ErrorQutput and m Error Qut put | nf os

The class ErrorQut put is the main error handling and redirecting class of the ML. It uses
m Error Qut put | nfos as an information container for error, debug or trace information that is
passed to registered error handling routines. See Section 5.4, “The Class Error Qut put _and
Configuring Message Outputs” for more information.

4. nFileSystemh

Defines a set of C functions for system independent file management (file open, close, etc.). All
methods support UTF-8 unicode strings to access files that contain unicode characters in their
absolute file names.

See also Chapter 9, Unicode Support for more information on internationalization and management
of files that contain international characters in their file names.

5. nmLibrarylnitMcros.h

This file defines macros that are used for platform-independent library initializations with correct
version checks. Most importantly, the macro M__I NI T_LI BRARY(ii ni t Met hod) is defined in this
file. This macro is used to initialize shared libraries independently of the underlying system (WIN32/
Mac OS X/Linux). When the library has been loaded, the given init method is called as soon as
possible. The name of the i ni t Met hod should be composed like < dI | Nane > + "I nit'. This is
necessary since this macro sets the name of the initialized DLL as well. Subsequent runtime types
will use this name to register the originating DLL.

See also Section 2.2.4, “The Runtime Type System” for macros to initialize module classes and
runtime types of the ML.

6. m Menory. h

Basic memory management class for the ML.

47

Detailed Class
Overview and Usage

10.

11.

12.

m Notify.h
Class to notify registered instances of ML changes. With this class, registered classes will be
notified of changes to ML internals. It is not intended to be used in normal modules, but can be
very useful for diagnostics.

mMRuntine.h , m RuntineDict.h , m RuntimeSubd ass.h , m RuntimeType. h

See Section 2.2.4, “The Runtime Type System” for more information on these classes and files.

m Syst em ncl udes. h

This file includes many important system files, makes correct adaptations for some platforms
and disables boring and unproductive warnings. It is designed to be independent of the ML or
M. Utilities and does not need to link to any ML or M_Ut i |i ti es binary. When this file is used,
the most important program parts are provided platform-independently and without any warnings.
Include this file instead of directly including system files.

m TypeDefs. h

Header file that contains the most important ML types, constants and definitions; this file
can be included without having to link the ML, M_Utilities or M.LinearAl gebra project
(see Section 2.6.1, “M_Li near Al gebr a(Vector2, ..., Vectorl0, Vectorl6, Matrix2, , ..., Matrix6,
guaternion, ImageVector)”) and it also does not use any C++ functionality. Thus much ML stuff can
be used without being really dependent on the ML.

m Uni code. h
File that contains a set of C functions for converting and managing normal unicode strings.

See also Chapter 9, Unicode Support for more information on internationalization and management
of files that contain international characters in their file names.

m Version. h

Public header file for ML version support (Section A.7, “Version Control”). It provides some support
for checking for the correct binary versions of the ML and the ML C-API.

2.6.3. Other Classes

2.6.3.1. Subl nageBoxd

Like _Subl mageBox_, only with Vect or 6_corners. Manages a rectangular 6D box given by two Vector6.
Permits intersections etc. See m Subl ngBoxf in project ML.

2.6.3.2. Other Classes and Types

The ML includes some frequently used types.

A detailed explanation of the following helper classes will be given in later editions of this document.
Please refer to later versions of this document or to the header files:

* Engi ne

A class derived from Modul e and intended to build modules similar to Open Inventor™ engines by
the use of ML fields. It does not provide any image input or output, i.e., only operations on fields can
be implemented.

* Pl ane

48

Detailed Class
Overview and Usage

Manages a geometric plane in 3D. Used as an encapsulated data type for a Pl aneFi el d.
* Rotation

Manages a geometric rotation in 3D. Used as an encapsulated data type for a Rot at i onFi el d.
* Disc

Manages a geometric 2D disk of a certain radius that is placed in 3D and that can also be voxelized
into any image.

* Sphere
Manages a geometric sphere in 3D.

2.6.3.2.1. MLDataType

The M.Dat aType is an enumerator describing all voxel data types currently available in the ML.
This includes built-in data types like M.int 8Type, M.ui nt 8Type, M.int16Type, M.uint 16Type,
MLi nt 32Type, M_ui nt 32Type, M.i nt 64Type, M_ui nt 64Type, M_f | oat Type and M_doubl eType as well
as (pre)registered types like Vector 2, Vect or 3, Vect or 4, Vect or 6, Vect or 8, Vect or 10, Vect or 16,
Vect or 32, conpl exf, etc.

Values of this type are often used to request or to determine image data or voxels of a certain type.
Since the number of M.Dat aTypes can change during runtime, it is implemented as an integer,
and the function M_NunDat aTypes() returns the current number of available voxel data types.

M.Dat aTypeNanes() returns a pointer to the table of data type names corresponding to the M_Dat aType
values.

’ Note
» An M.Dat aType value may also be invalid or out of range. This should be taken into
consideration when using such values. M.I sVal i dType(M.Dat aType) can be used to
check a type's validity.

e The number of data types may grow during runtime. M_LNunDat aTypes() can be used to
retrieve the current number.

A number of other useful functions is available to query information about M_Dat aTypes:
1. const char *M.NaneFronDat aType(M.Dat aType dt)

Returns the C string name of data type dt if dt is a valid type. Otherwise " is returned.
2. M.Dat aType M.Dat aTypeFronNane(const char * const nane)

Returns the M.Dat aType value of the data type with the name nane. If nane is not valid, -1 is
returned.

3. doubl e M.Dat aTypeMax(M.Dat aType dt)

Returns the maximum value of data type dt ; if dt is invalid, O is returned.
4. doubl e M.Dat aTypeM n(M.Dat aType dt)

Returns the minimum value of data type dt if dt is invalid, O is returned.

5. size_t MSizeO (M.DataType dt)

49

Detailed Class
Overview and Usage

Returns the size of the data type dt in bytes. 0 is returned for invalid types.
6. int MlIsValidType(M.DataType dt)

Returns t rue(=1) if data type dt is valid. Otherwise f al se(=0) is returned.
7. int M.IsSigned(MDataType dt)

Returns t rue(=1) if data type dt is signed. Otherwise f al se(=0) is returned.
8. int M.IslntType(M.DataType dt)

returns t rue(=1) if data type dt is an integer data type. Otherwise f al se(=0) is returned.
9. int M.IsFloat Type(M.Dat aType dt)

Returns t rue(=1) if data type dt is a floating point data type. Otherwise f al se(=0) is returned.
10. int M. sScal ar Type(M.Dat aType dt)

Returnstrue(=1) if datatype dt is a scalar (i.e., a built-in) type. Otherwise f al se(=0) is returned.
There are some more functions for the definition of features and properties related to data types. See
the documentation in the file nl Dat aTypes. h for more information. A modern version to get compile-
time information on M_Dat aType is to use the TypeTr ai t s template class. See the documentation in the
file m TypeTraits. h for more information.

* int M.RangeOrder (M.DataType dt)
e int MHolds (MDataType dt1l, M.DataType dt2)
* M.Dat aType M.Get Pronot edType (M.DataType d1, M.DataType d2)

* M.Dat aType M.Cet Dat aTypeFor Range (double *min, double *max, int preferUnsigned)

e M.Dat aType M.Get Dat aTypeFor UncorrectedRange (double nin, double nmax, i nt
pr ef er Unsi gned)

* M.Dat aType M.CGet RangeAndPr eci si onEqui val ent (M.Dat aType dt)

* M.Dat aType M.Get Pronot edPreci si on (M.Dat aType dt1, M.DataType dt2)

2.6.4. M_Base

This project contains a set of classes that are useful when data structures like markers, lists, functions,
diagram information, etc. are needed that are related to image processing, although they may not be
an integral part of it. (See also project M_Base in the modules library.)

2.6.5. M_Ker nel

A small template class library with some modules for managing a matrix of kernel elements, and for
filtering or correlating/convoluting images. See Kernel Progamming for detailed information.

2.6.6. M_Tool s

Class that contains a set of helper functions for different tasks. See m Tool s. h in project M_Tool s for
more information.

50

Detailed Class
Overview and Usage

2.6.7. MLDi agnosi s

The ML project M_LDi agnosi s contains some modules that can prove to be helpful for module debugging
and for changing the ML configuration at runtime.

1.

10.

BadMbdul e

This module is designed to commit a large number of errors and to have many bugs. Hence
applications, module networks, MeVisLab, etc. can be checked for stability on bad module
behavior.

CacheVi ew

This module shows the current state and load of the Memory Manager cache.

Checksum

This module calculates a checksum of an ML image at the input. This is a simple way to see whether
two images differ. Saving just the checksum is sufficient for a later comparison of images. This is
especially useful to see whether a module calculates the same image as some time before without
storing the entire image.

Consol e

A module that shows all ML outputs in a console window.

Cor eContr ol

Provides an interface to configure the ML error handling system (e.g., how to handle a fatal error,
whether the ML continues or terminates), to enable/disable debugging symbols, to configure the
ML caching and multithreading, and to obtain the version of the ML.

Error Test

Provides a simple interface to create messages, errors, and exceptions of user defined types. The
exact behavior of the applications, error handlers, networks and the ML can be explicitly tested
for any type of error.

Fi el dTracer

In module networks, fields of different modules are often connected and it can become quite difficult
to see from where field changes are sent. The field tracer allows for the creation of a field change
list in a certain period of time and by that, it allows to analyze changes in the network.

M.LogFi | e

A module that redirects ML output to a log file. The log file's content can be used for further
diagnostic purposes (e.g. after crashes).

Modul eVi ew

This module shows the currently instantiated modules and offers a view on the module interfaces,
their fields, inputs and outputs, even when working with an ML release version that does not contain
debug information.

Runt i meDunp
This module allows for an installation of a dump function in the ML core that will be called when a

runtime type causes a crash that is to be handled by the ML. The current state of the C++ interface
of some runtime types like fields, modules derived from Modul e etc. will be dumped in the error

51

Detailed Class
Overview and Usage

output for further diagnostic purposes. This is intended especially for error diagnostics in release
mode when the debugger cannot be used. This module can also remain in released applications so
that log information on crashes that did not occur during application development in debug mode
are available.

11. RuntineVi ew

This module shows all currently registered types in the runtime type system as well as the libraries
they come from, their parent classes, whether they are abstract or not, etc.

12. Tester

This powerful module applies a number of tests to one or more modules. It checks for correct
field names, memory leaks, stable behavior on many different input images with different (page)
extents, data types, min/max values, etc. Parameter and base fields are tested with a large number
of combinations of values. More test images are continually added to the module. Testing time,
intensity, etc. can be controlled by parameters.

13. Test I nput

This module generates test images of different types that can be addressed by indices. Thus a
large number of different images that cover most image properties like image extent, page extent,
min/max values, data type, etc. is available for testing.

2.6.8. M.l nageFor mat

The ML project MLI mageFor mat contains file format classes for storing, loading and modifying an ML
Pagedl mage or subimages in a file.

It stores all information of an up to 6D ML Pagedl nage, including extended voxel types, paging
information and property extensions. It supports files of more than 4 GB, uses the registered
M.Dat aConpr essors classes for page-based compression, checks for pages containing only one
voxel value to avoid file accesses and unnecessary compressor calls, and many more features. See
Section 2.6.9, “ M_Dat aConpr essor s_” for more information on the M_Dat aConpr essor s.

The following classes are available as a programming interface (see ni | negeFor mat Doc. h and class
headers of those classes for details):

1. M.I nmageFor mat

Class to manage a stored file for saving, loading or retrieving image information. It is mainly used
by the module classes.

2. M.l nageFor mat Tool s
Collection of independent static file IO classes that are mainly used by M.I nageFor nat .
3. M.l nageFor mat Fi | eCache
Module class to cache an image in a file comparable to a MenCache module.
4. M.I nageFor nat Save
Module class to save a PagedI| nage and user tags.
5. M.I mageFor mat Load
Module class to load a file and some of its information.

6. M.l nmageFormatInfo

52

Detailed Class
Overview and Usage

Module class to get information about a file.
7. M. mageFor mat Tag

Tag class used in MLI mageFor nat TagLi st to store one pair of information items such as a name
and an integer or a string.

8. M.l mageFor mat TagLi st

Class to describe the list of tag information stored in a file.

2.6.9. M.Dat aConpr essors

The ML project M.Dat Conpressors contains the base class Dat aConpressor that allows
the implementation of new data compression algorithms. It also contains a factory class
Dat aConpr essor Fact or y that allows for the registration of user-derived classes. By that, any number
of new compression classes can be implemented which are automatically detected by classes using
compression algorithms, for example M.l mageFor mat modules (Section 2.6.8, “ M_I mageFor nat).

1. Dat aConpressor
Abstract base class for ML data compression algorithms. New data compressors can be derived
from this class and then be registered in the Dat aConpr essor Fact ory to become available for all
other modules and classes that use data compression.

2. Dat aConpressor Factory

Factory class for ML data compression algorithms. It provides access to all registered data
compressors, for example for file formats or memory managers using data compression.

See M.Dat aConpressor Doc. h and other header files in project M_Dat aConpr essor for details.

2.6.9.1. How to Implement a New DataCompressor

Follow these steps to implement your own compressor (see M.Dat aConpr essor Doc. h and other
header files in project M_Dat aConpr essor for details and code fragments):

1. Be sure to implement everything in the namespace ML_UTILS NAMESPACE.

2. Derive your compressor from the Dat aConpr essor class and override the following methods:
a. virtual const std::string getTypeNane() const = O;
b. wvirtual const std::string getVersion() const = O;
Cc. virtual const bool isSupportedVersion(const std::string &er) const = O;

d. virtual MErrorCode conpress(const void *srcMem size t srcSize, void
*&dst Mem M.int &JstNum const = O;

e. virtual MErrorCode deconpress(const void *srcMem size t srcSize, void
*&dst Mem M.int 64 & esSize) const = O;

3. Register your DataConpressor (for example during dll/so registration) with
Your Dat aConpr essor: :initC ass() in the runtime type system of the ML first and then in the
Dat aConpr essor Fact ory.

4. Be sure that classes that use your data compressor will find it registered in the
Dat aConpr essor Fact ory before they are instantiated.

53

Detailed Class
Overview and Usage

In MeVisLab, you can do this by specifying the PreloadDll flag in a .def file for your compressor.

Optionally, you may also want to override the nunsedHi nt s() method and initialize the following
members appropriately to specify parameters for your compressor which might be detected
and passed by some applications to control compression behavior: The parameters _hi nt Type,
_hi nt Nane, _rangeM n, and _r angeMax should be set by your derived class, the other parameters
should be set to their default values.

It is strongly recommended to implement the virtual methods getVersion(),
i sSupportedVersions(), getVendor (), getSuffix(), and isLossy() in order to provide
additional information about classes using the compressor.

Especially i sLossy() should be implemented to make sure that other classes know that
decompressed data need not be identical with compressed data. Otherwise, checksum tests done
in those classes will fail.

All classes using Dat aConpr essor s Via the Dat aConpr essor Factory (the M.l mageFor mat class, for
example) will automatically detect your compression algorithm and offer it as an option.

The following example shows a complete header file implementation of a data compressor that packs
16 bit words by removing bit 12 to 15. It is a potentially lossy compressor, because highest bits are
removed. It, however, could be useful for CT data, for example, which do not use those bits, or for cases
where other compressors do not reach high compression ratios, because data is too noisy:

Example 2.9. CT Data Compressor Packing 12 of 16 Bits

#i fndef __nl CTPackDat aConpr essor _H

#def i

#i ncl
#i ncl

ne __m CTPackDat aConpressor _H

ude "M.CTPackDat aConpr essor System h"
ude "ml Dat aConpr essor. h"

M__UTI LS_START_NAVESPACE

/1! CTPackDat aConpressor exanple for the M.
cl ass M.CTPackDATA_ COWMPRESSOR_EXPORT CTPackDat aConpressor : public DataConpressor

{

public:

/1!

Constructor (no destructor needed).

CTPackDat aConpr essor () : DataConpressor() { }

/1!

Returns name of conpression scheme, used e.g., "RLE', or "LZW.

virtual std::string get TypeNane() const { return "CTPack"; }

/1!
/1!

Returns the version string, e.g., "1.1.4" or "1.1"; conpatibility
check needs to be done in isSupportedVersion().

virtual std::string get Versi on() const { return "1.0"; }

/1!
/1!

Returns true if the passed version ver is supported by the
i npl ement ed conpressor class and fal se otherw se.

virtual bool i sSuppor t edVer si on(const std::string &er) const
{ return ver == getVersion(); }

/1!
/1!
/1!

Return the nane of the vendor providing the conpressor code
or algorithm sonething |ike "MeVis", the author or the
conpany selling the al gorithm

virtual std::string get Vendor () const { return "M. Guide"; }

/1!
/1!

Returns the suffix describing the conpression schene, for
exanple "rle" or "lzw'.

virtual std::string get Suf fix() const { return "cpk"; }

/1!
/1!
/1!
/1!

Returns true if conpression is lossy, false if not, base class
default is false.

W have to enable | ossy, because we throw away hi ghest nibble

whi ch coul d cause check sumerrors in file formats if not denoted.

virtual bool i sLossy() const { return true; }

/1!

Nunber of hints used by the derived conpressor class (defaults

54

Detailed Class
Overview and Usage

/1! to O in base class).
virtual M.uint8 nunJsedHi nt s() const { return O; }

/1! Conpresses a chunk of menory to be deconpressed |ater with deconpress().
/1! \param srcMem is the pointer of data to be conpressed.

/1! \param srcSize is the size of the data pointed to by srcMemin bytes.
/1! \param dstMem the pointer to the conpressed data.

/1! The conpressor will allocate the required nmenory and
/1! overwites the dst Mem poi nter which then nmust be freed
/1! by the caller with MFree() or Menory::freeMenory().
/1! \param dstNum returns size of conpressed data chunk in bytes or O on error.
/1! \return M._RESULT_OK on successful conpression or an error code
/1! describing the error.
virtual M.ErrorCode conpress(const void *srcMem

size_t srcSi ze,

voi d *&dst Mem

M.i nt &dst Num) const
{

M_.Err or Code err Code = M._NO_MEMORY;
dst Mem = NULL;
dst Num = 0;

if (srcMem && (srcSize>0)){

/'l Determne size of destination buffer, it requires 4 byte at begin to
/Il store original data size and in worst case 1 bit nore per CTPack nore
/1 if no CTPack can be conpressed. Add four bytes for rounding securely.

const size_t packedSize =
static_cast<size_t>(sizeof (Mint64) + (srcSize * 3) / 4 + 4);

dst Mem = Menory: : al | ocat eMenor y(packedSi ze, M._RETURN_NULL) ;
if (dstMem!= NULL) {

/] Get byte pointer to output nenory and cl ear data.
unsi gned char *targetData = static_cast<unsigned char *>(dstMen);
nmenset (target Data, 0, packedSi ze);

/] Store size of source data in little endian format at buffer start.
(static_cast<M.int64*>(dst Men))[0] = static_cast<M.i nt64>(srcSize);

if (!MlIsLittleEndian()) {
M_.SwapByt es(t arget Data, sizeof (M.int64), sizeof (M.int64));
}

/1 Traverse all nibbles/half bytes.

srcSi ze *= 2;

size_t oNibble = 16; // Set start to first nibble after stored startDstSi ze.
for (size_t n =0; n < srcSize; ++n) {

/'l Get nibble fromsource data.

const unsigned char nib =
(static_cast<const unsigned char*>(srcMen)[n>>1] >>
((n & 1)*4)) & Oxf;

/1 Add ni bble to output data.
if ((n &3) !'=3) {
target Dat a[oNi bbl e>>1] |= (oNibble & 1 ? (nib << 4) : nib);
++0oNi bbl e;
}
}

/1 Cal cul ate nunmber of really used bytes in destination buffer and add 1
/'l byte as buffer zone for check of buffer overrun during deconpression.
dstNum = (oNi bble >> 1) + (oNibble &1 ? 1 : 0);

/] Return success.
errCode = M__RESULT_CX;
}
}
return err Code;

}

/1! Deconpresses a chunk of nenory created with conpress().

/1! \param srcMem is the pointer to the conpressed data to be deconpressed.
/1! \param srcSize is the size of the data pointed to by srcMemin bytes.
/1! \param dstMem returns the pointer to the deconpressed data; it is

/1! overwitten with the pointer to the allocated and
/1! unconpr essed data whi ch nust be freed by the caller
/1! with MFree() or Menory::freeMenory().

/1! \param resSize returns the size of the deconpressed data

/1) menory in bytes or -1 on error.

55

Detailed Class
Overview and Usage

/1! \return M._RESULT_OK on successful deconpression or
/1! an error code describing the error.
virtual M.ErrorCode deconpress(const void *srcMem
size_t srcSi ze,
voi d *&dst Mem
M.i nt 64 & esSi ze) const
{
/1 Pointer to working and result buffers.
dst Mem = NULL;
resSi ze = -1;

M_Er r or Code err Code M._BAD PO NTER _OR 0;
/'l Check unconpressed size for at |east the four size bytes at start.
if (srcSize <= sizeof (Mint64)) {
errCode = M._FI LE_OR DATA STRUCTURE_CORRUPTED;
} else {

/] Get size of deconpression data fromstart of conpressed data.
M.i nt 64 unconpressedSi ze = (static_cast<const M.int64*>(srcMen))[0];

if (!MlIsLittleEndian()) {

/1 Swap data to local endian format, the data is always stored
/1 inlittle endian.
M_SwapByt es(rei nt er pret _cast <unsi gned char*>(&unconpr essedSi ze) ,
si zeof (M.i nt 64) ,
si zeof (M.i nt 64)) ;
}

if (unconpressedSize < 0) {

/1 Shoul d not happen, data is probably corrupted.
errCode = M__FI LE_OR_DATA_ STRUCTURE_CORRUPTED;
} else {

/1 Size seens to be valid, allocate return buffer.
dst Mem = Menory:: al | ocat eMenory(static_cast<size_t>(unconpressedSi ze),
M._RETURN_NULL) ;

if (!dstMem) {
err Code = M__NO_MEMORY;
} else {

/1 Unpack all packed ni bbles from source data into cleaned result buffer.
menset (dst Mem 0, unconpressedSi ze) ;
M.i nt 64 oNi bble = 0;
for (size_t n = 16; n < srcSize*2; ++n) {
/1 Get nibble from packed data.
const unsigned char nib =
(static_cast<const unsigned char*>(srcMen[n>>1] >>
((n & 1)*4)) & Oxf;

/1 After unpacking 3 nibbles add a fourth enpty one.
if ((oNibble & 3) == 3) { ++oNibble; }

/1 Add nibble to output, shifted by 4 bits if necessary.
static_cast<unsigned char*>(dst Mem)[oNi bble >> 1] |=
(oNibble & 1) ? (nib << 4) : nib;

++0Ni bbl e;
}

/! Return success and nunber of unconpressed bytes.
errCode = M__RESULT_CX;
resSi ze = unconpressedSi ze;
} /1 el se M._NO_MEMORY;
} /1 else if ((unconpressedSize < 0))
} Il else if (srcSize <= sizeof (M.int64) + 1)

/! Clean up on error.

if (M._RESULT K != errCode) {
M_Fr ee(dst Men) ;
dst Mem = NULL;
resSize = -1;

}
return err Code;
}
private:

/1! Inplements interface for the runtime type systemof the M.
M._CLASS HEADER(CTPackDat aConpr essor)
I

56

Detailed Class
Overview and Usage

M__UTI LS_END_NAMESPACE
#endi f // __ml CTPackDat aConpr essor _H

Do not forget to implement the registration code in the ML runtime type system with the typical
M__CLASS_SOURCE macro in the .cpp file:

M__CLASS_SOURCE(CTPackDat aConpr essor, Dat aConpressor);

Also, the registration of the classes in the runtime type system and in the factory for ML data compressors

need to be called before using them for the first time (normally in the initialization code while loading
the module code):

CTPackDat aConpressor ::initdass();
Dat aConpr essor Factory: : regi st er Conpr essor (CTPackDat aConpr essor : : get O assTypel d());

2.7. Registered Data Types

Some ML classes are only dedicated to the registration of new voxel data types. They are not part of
the ML, but they are registered at initialization time:

1. M.Typel nfos - See MLTypelnfos.

2. M.TStdTypel nf os - See MLTStdTypelnfos.

3. M.TConpl exTypel nf os - See MLTComplexTypelnfos.

4. M.TDoubl eVect or Typel nf os - See MLTDoubleVectorTypelnfos [119].

5. M.TMatri xTypel nf os - See MLTMatrixTypelnfos.

2.8. ML Data Types

In the ML, there are some important voxel and data types used in different contexts.

2.8.1. Voxel Types and Their Enumerators

The following voxel types and enumerators are available in the ML:
1. M.int8andM.int8Type

2. M.uint 8 and M_ui nt 8Type

3. M.int16 and M.i nt 16Type

4. M.uint 16 and M_ui nt 16Type

5. M.int32 and M.i nt 32Type

6. M.uint 32 and M_ui nt 32Type

7. M.int64 and M.i nt 64Type

8. M.float and M.f| oat Type

9. M.doubl e and M_doubl eType

10. std:: conpl ex<fl oat > and M_.Conpl exf Type
11. std:: conpl ex<doubl e> and M_Conpl exdType

12. m::Vector*f and M_Vect or *f Type

57

Detailed Class
Overview and Usage

13.

14.

15.

16.

17.

18.

19.

m :: Vect or *d and M_Vect or *dType

m :: Matrix*f and M_Mat ri x*f Type
m::Matrix*dand MLMatri x*dType

m :: Vector*i 8 and M_Vect or *i 8Type
m :: Vector*i 16 and M_Vect or *i 16Type
m :: Vector*i 32 and M_Vect or *i 32Type

m :: Vect or *i 64 and M_Vect or *i 64Type

2.8.2. Index, Size and Offset Types

The following index and offset types are available in the ML:

1.

M.i nt

A signed ML integer type with at least 64 bits used for all index calculations on very large images
even on 32 bit systems (typically used for positions and coordinates in images). It is widely used
in the ML for 64 bit index, size and range specifications which support signed arithmetic.

Examples of usage are classes | mageVect or and Subl mageBox which use M.i nt as members.
M_ui nt

An unsigned ML integer type with at least 64 bits used for index calculations on very large images
even on 32 bit systems. Its is sometimes needed for image positions and coordinates where a sign
is not desired. Note that the signed M.i nt should normally be used for safe signed arithmetics, so
M_ui nt is rarely used in ML contexts. It is typically used for index, size and range specifications
without sign.

An example of usage is the specification of file sizes which can be larger than 4 GB even on 32 bit
systems and where negative sizes make no sense. Further examples are some function arguments
in mFileSystemh .

M_sof f set

This signed ML offset type is a 32 bit signed integer on 32 bit platforms and a 64 bit signed integer
on 64 bit platforms. This type is typically used for expressions in pointer offsets where 64 bit integers
could cause warnings on 32 bit systems (because their range exceeds 32 bit pointer offsets). Such
a type is necessary, because normal integers are not large enough on 64 bit systems; they remain
32 bit on most 64 bit platforms. In most ML sources, the M_sof f set type is used instead of the
M_uof f set , because signed arithmetic is often required in image processing operations.

An example of usage are index tables for kernel elements which are added to pointers (see project
M.Ker nel and classes Ker nel BaseMbdul e and Ker nel Modul e). These indexes must be able to
describe negative and positive offsets on pointers which remain in the address space of the system.

M_uof f set

This unsigned ML offset type is a 32 bit unsigned integer on 32 bit platforms and an unsigned 64
bit one on 64 bit platforms. Such a type is necessary, because a normal unsigned integer is not
large enough on 64 bit systems; it remains 32 bit even on many 64 bit platforms. Be careful when
using this type in ML image processing, because in most contexts signed arithmetic is required
when offsetting image pointers. Thus it is rarely used in ML contexts.

M.ssi ze_t

58

Detailed Class
Overview and Usage

The signed ML size type is a signed 32 bit si ze_t on 32 bit platforms and 64 bit si ze_t on 64 bit
platforms. It corresponds to the normal ssi ze_t type on Unix platforms and to the SSI ZE_T type
on windows platforms. It is used for index, size and range specifications which do not exceed the
signed range of the address space of a system. It is rarely used in ML contexts.

6. Msize_t

The unsigned ML size type is an unsigned 32 bit si ze_t on 32 bit platforms and 64 bit si ze_t on
64 bit platforms. It corresponds to the normal si ze_t type available on most systems. It is typically
used for index, size and range specifications which do not exceed the range of the address space
of a system. The original si ze_t type is used in most ML code, because it is platform-independent.

‘ Note
Internally (on 32 bit platforms), a si ze_t (and M.si ze_t) is hormally either an unsi gned
i nt oran unsi gned | ong depending on compilers and platforms.

M_uof f set is always an unsigned integer type. Therefore si ze_t and M.uof f set do not
behave identically everywhere (for example when they are passed as references) although
their sizes and signs always come along with each other. So both types are useful and in a
few cases they have to be distinguished carefully when implementing platform-independent
code.

Of course, the same applies for the types M_ssi ze_t and M_sof f set .

59

Chapter 3. Deriving Your Own Module
from Module

Chapter Objectives

By reading this chapter you will learn how to derive your own ML module from the class Mbdul e. You
will receive detailed information on the following methods:

Constructor,

Destructor,

acti vat eAtt achnent,

handl eNot i fi cati on,

cal cul at eQut put | ragePr operti es,

cal cul at el nput Subl mageBox,

using TypedCal cul at eQut put | mageHandl er,
cal cul at eCut put Subl mage,

handl el nput ,

getTile,

get Updat edl nput | nage.

Also, you will learn how to use and configure additional functionality, such as:

checking for interruptions,
multi-threading,
bypassing page data, and

activating the support of registered voxel types.

With MeVisLab version 2.2, a new concept to separate module functionality from image processing
functionality has been introduced in the form of using a TypedCal cul at eQut put | mageHand! er . Read
Section 3.1.5, “Using TypedCal cul at eQut put | mageHandl er” to learn more.

The chapter ends with a discussion of typical traps and pitfalls you may encounter when you implement
classes derived from Modul e. See Section 3.1.18, “Traps and Pitfalls in Classes Derived from Module .

See Section A.1, “Creating an ML Project by Using MeVisLab”. for a quick start with module
development.

Important

The ML module wizard in MeVisLab supports many of the steps discussed in the following
sections. Use the wizard in order to avoid spending too much time on writing everything
on your own!

60

Deriving Your Own
Module from Module

3.1. Deriving from Modul e

The following sections will explain how to implement your own image processing algorithm.

3.1.1. Basics

When you begin to implement your own ML image processing module, you usually just need the
following include file:

#i ncl ude "n Modul el ncl udes. h"
All ML specific C++ code should be written within the namespace ML - thus no prefixes are needed
before constants and classes, and collisions with other library symbols are minimized:
M._START_NAMESPACE

/1 here the ML specific code is added

M._END_NAMESPACE

An image processing module is derived from the class ni:: Mbdul e . Since modules are usually
compiled in their own DLL (Windows: "dynamic linked library", Linux: "shared library", Mac OS: "dynamic
shared libraries"), it may be necessary to export this class on the DLL interface. Therefore, a macro
M_EXAMPLEOPSEXPORT is used to specify the export of a class in the system header file of the DLL. See
Section A.3, “Exporting Library Symbols”

M._START NANVESPACE
cl ass MLEXAMPLEOPSEXPORT AddExanpl e : public Mdul e
/1 class interface and/or code
}; /1 end of class AddExanpl e

M._END_NAMVESPACE

‘ Note
Although exporting classes is only necessary on Windows platforms, it should be added
while developing on other platforms as well in order to ensure platform-independence.

Since a new ML module is usually compiled as a new library that an application can load at runtime, you
must make your module accessible to a module database. The ML implements such a database as a
Runtime Type System (see also Section 2.2.4, “The Runtime Type System”). Thus implementing your
own module just requires a small interface to enter the module as a new type in that runtime type system.
Hence, it can give its name and its type on request as well as create an instance of itself on demand.
The following macro (from file m Runti meSubCl ass. h) declares the necessary class interface:

M__START_NANMESPACE

cl ass MLEXAMPLEOPSEXPORT AddExanpl e : public Mdul e

{
/1 class interface and/or code ...
/1 Inplenent runtine type interface of nodule. Add it at
/'l end of class declaration since it changes nenber access
/1 control to 'private'.
M.__MODULE_CLASS HEADER(AddExanpl e)

}; I/ end of class AddExanpl e

M._END_NAMVESPACE

Important

To make this class available to the runtime type system it is necessary to call its static
i ni t () function. This function will be declared by this macro when the dynamic linked library
of your module is initialized.

61

Deriving Your Own
Module from Module

@ Important
Be sure that the class name is written correctly, since not all compilers are able to check

for wrong names in that macro.

A simple overview of a Modul e:

Figure 3.1. Mbdul e Structure (1)

Field container
(Parameter interface)

Image processing interface
(for Host calculate™() methods)

Functional interface to Host
(getTile*() functions etc.)

Pagedimage
("Ilmages”)

The Modul e is derived from Fi el dCont ai ner that holds the module's parameters:

62

Deriving Your Own
Module from Module

Figure 3.2. Mbdul e Structure (Il)

Field
Container
| foutConnector loutConnector
l OutField O |--+| OutField n
A
Memorylmage Memorylmage
ML Cache
%\Memopemes |ImageProperties ‘ Int ‘ |Matrix ‘
Hr ™ IntField O |---| MatrixField
.—.—k‘“ P@Dsf\~\\ PageList
l\\\\ e |
outConnector| outConnector|
Pagedimage Pagedimage InField_ O |... InField_n

3.1.2. Implementing the Constructor

The constructor is a crucial part of an ML module because it

» generates the parameter interface (including inputs and outputs) and also initializes it,

» enables/disables multithreading support,

 specifies whether your module performs in-place calculations or bypasses image data,
 can specify how changes to the parameter interface (including inputs) notify output images.

The implementation of the constructor must always include a base class constructor call of the class
Modul e, and the number of image inputs and output a module is passed as arguments (two inputs and
one output in the example):

M__START_NAVESPACE

AddExanpl e: : AddExanpl e(): Mdul e(2, 1)
{
/...

}

63

Deriving Your Own
Module from Module

M._END_NAMVESPACE

See also class Fiel dContainer (Section 2.1.3, Fi el dContai ner ") as well as classes
I nConnect or Fi el d and Qut Connect or Fi el d (Section 2.1.2, “ Fi el d ") for other ways of adding or
removing inputs to/from your modules.

Now a set of parameters can be added to specify the module interface. Note that all fields are added
to the module (see also class Fi el dCont ai ner).

Be aware that field names should only use alphanumeric characters and may not include spaces or
special characters. The example code fragment adds a float and a Boolean parameter to the module
interface and initializes them:

_addConst FI d = addFl oat (" Constant");
_addConst FI d - >set Fl oat Val ue(0);

_del et eVoxel FI d= addToggl e(" Del et eVoxel ") ;
_del et eVoxel Fl d->set | nt Val ue(fal se);

Programmers who favor short code can also write the following:

(_addConst Fl d = addFl oat (" Constant"))->set Fl oat Val ue(0);
(_del et eVoxel FI d= addToggl e(" Del Voxel ")) - >set | nt Val ue(fal se);

Note that the members _addConst FI d and _del et eVoxel FI d are pointers to the field types that are
created, and must be declared in the header file like this:

private: // or protected

FloatField *_addConstFld;
Toggl eFi el d *_del et eVoxel Fl d;

Access functions can be implemented to make fields and module parameters directly accessible to an
application without permitting field pointer changes. These functions are especially useful when further
classes are to be derived from your class without the risk of derived classes doing modifications to
invalid field pointers:

public:

inline FloatField &getAddConstFld() const { return *_addConstFl d; }
inline Toggl eFi el d &et Del et eVoxel Fl d() const { return *_del eteVoxel Fl d; }

If you want parameter changes to also invalidate the image output of the module and to notify connected
modules of the changed/invalidated image, you can simply connect your field(s) to the changed output
image:

_addConst FI d ->attachFi el d(get Qut put | mageFi el d(0));
_del et eVoxel Fl d->at t achFi el d(get Qut put | nageFi el d(0)) ;

Important

If not disabled, field value changes notify all observers of the field. Therefore the
handl eNoti fi cati on() function of your module is also called when you set field values.

The following two methods (they may be nested) can be used to avoid the handl eNot i fi cati on()
being called when field values are set:

handl eNoti ficati onOfif();
/1 Change field values here without calling handl eNotification().

handl eNoti fi cati onOn();

' Note
Input and output images are also ML module parameters and therefore they are represented
by fields (I nput Connect or Fi el d and Qut put Connect or Fi el d) as well.

Since input and output fields can be added via the superclass constructor, the methods
get I nput | mageFi el d(i nt idx) and get Qut put | mageFi el d(i nt idx) are available to
access these fields.

64

Deriving Your Own
Module from Module

Usually, input image changes need to invalidate the output and to notify the connected modules; if so,
the output field(s) just have to be attached to the input field(s). This is possible because fields handle
input images like other module parameters:

get | nput | mageFi el d(0) - >at t achFi el d(get Qut put | mageFi el d(0));
get | nput | mageFi el d(1) - >at t achFi el d(get Qut put | mageFi el d(0));

Some additional features of the Modul e class allow the configuration of further image processing
behavior:

* In-place image processing. See Section 3.1.11.1, “Inplace Image Processing”.

» Bypassing image data. See Section 3.1.11.2, “Bypassing Image Data”.

» Processing image data in parallel. See Section 3.1.11.3, “Multithreading: Processing Image Data in
Parallel”.

* Processing images of registered voxel types. See Section 3.1.11.4, “Processing Images of Registered
Voxel Types”.

See Section 3.1.11, “Configuring Image Processing Behavior of the Module” for further details.

3.1.3. Module Persistence and Overloading
activateAttachnment s()

In common ML modules, the algorithm's parameters are implemented as fields. Therefore, module
persistence does normally not have to be implemented, since the application usually should scan
the field interface of all ML modules as well as save and reload their states from/to a file (see also
Section 2.1.2, “Fi el d ” and Section 2.1.3, “ Fi el dCont ai ner).

When an application reloads or clones ML modules, a specific problem needs particular attention. Within
the given situation, the application and its connections usually re-create the network modules, and field
values are restored. This causes some network modules to start calculation, because fields are updated
by the loading process, which would not only result in long startup times but also in calculations being
performed on partially invalid module data.

The solution to this problem is to disable field notifications while loading (handl eNot i fi cati on() and
other field observers are not called) and to notify all modules with a "load-finish" signal when loading
has been completed. So the modules can update their internal states to the new field values in one step.
Many modules do not need to handle this signal, but some do. To implement this update functionality,
the method act i vat eAt t achnment s() that stands for this "load finished" signal can be overloaded:

virtual void activateAttachments()

{

/1 1 nplenment your update stuff here ...

/1 Do not forget to call the super class functionality, it enables field
/1 notifications for your nodul e again.

/1 SUPER_CLASS is the class you derive from (usually Mdule).

SUPER_CLASS: : acti vat eAttachnents();
}

As a general rule, you need to overload this method when your class includes non-field members that
require updates on field changes. Update these membersin act i vat eAt t achment s, because there you
have the new field setting after e.g., module reloads.

' Note
The order of execution on loading a module is as follows:

1. Module creation (constructor call)

65

Deriving Your Own
Module from Module

2. Loading and setting of field values and connections (without calls of
handl eNoti fi cation(Field*))

3. CallofactivateAttachements()

3.1.4. Implementing handl eNoti fi cati on()

Sometimes it is necessary to react on changes to the fields that represent a module's interface. This
can easily be done by overloading the method handl eNot i fi cati on() which is called when any field
(value) is changed.

voi d AddExanpl e: : handl eNoti fication(Field *field)

{
if (field == _addConstFl d) {
/* The val ue of _addConstFld has changed. */

}
if (field == getlnputlmageField(0)) {
/* First input is (dis)connected, updated, invalidated... */

}
if (field == getlnputlmageField(1)) {
/* Second input is (dis)connected, updated, invalidated... */
}
}

Note
&
The handl eNot i fi cati on() call should be carefully observed, because:

» Any change to field values (also from within the constructor!) normally causes a call of this
method (if not blocked). See handl eNot i fi cati onOf f () and handl eNoti fi cati onOn()
as described in Section 3.1.2, “Implementing the Constructor”. The call of
handl eNot i fi cati on() is deactivated between these two calls which is useful e.g., in
the constructor to avoid side effects during the initialization phase of the module.

e Field changes from inside of handl eNotification() do not cause recursive
handl eNot i fi cati on() calls in the same module because that is usually not desired.
Nevertheless, such field updates can cause handl eNotification() calls in other
modules (e.g., via field connections).

» Changing fields within cal ¢c* methods is generally allowed but these methods never call
handl eNot i fi cati on() and do not notify connected fields. This is necessary to avoid
image processing being indirectly restarted by field updates.

 In the overloaded method handl eNot i fi cati on(Field *f), itis not needed to call the
superclass code since Modul e: : handl eNoti fi cati on() is an empty method.

Tip
The statement
if (field==_addConstFl d) { getQutputlmageField()->touch(); }

in handl eNot i fi cati on() usually has the same effect as

_addConst Fl d- >at t achFi el d(get Qut put | nageFi el d()) ;

in the constructor.

3.1.5. Using TypedCal cul at eQut put | mageHandl er

Since MeVisLab version 2.2, a new way to implement typed image processing in an ML module has
been introduced which is the default setting of MeVisLab's module wizard. It uses a separate class for
the actual image processing which is derived from TypedCal cul at eQut put | rageHandl er.

66

Deriving Your Own
Module from Module

Using a TypedCal cul at eCQut put | mageHandl! er has the following advantages:

« It supports complex configurations of output/input type combinations (compared to the CALC *
macros).

« It facilitates implementation of thread-safe image processing, since the processing is no longer done
in the module itself.

« It allows to have different output image handlers for different output images or even for different
module states.

For further information, please read ml::TypedCalculateOutputimageHandler,
ml::CalculateOutputimageHandler, and ml::Module::createCalculateOutputimageHandler.

3.1.6. Implementing
cal cul at eQut put | magePr operti es()

The virtual method cal cul at eQut put | mageProperties(int outlndex, Pagedlmage* outl mage)
must be overloaded to change the properties of the output images, as well as to change the properties
of the input subimages which are passed to cal cul at eQut put Subl mage() .

For a certain output index, the method sets properties of the output image (depending on the properties
of the input images). Hence, for each property of the output image out | nrage, the corresponding
properties of any input image get | nput | rage(0), ..., get | nput | mage(get Num nput | mages()-1) can
be merged and set as new properties.

To change the properties of an input subimage, you can use the following methods of the PagedI nage:
e voi d set | nput Subl nrageDat aType(i nt inputlndex, M.DataType datatype)

e voi d setl nput Subl magel sReadOnl y(i nt inputlndex, bool readOnly)

voi d set | nput Subl mageUseMenoryl nage(i nt inputlndex, bool useMenl ng)
e voi d setl nput Subl mageScal eShi ft(int inputlndex, const Scal eShiftData& scal eShift)

An access method to the input images is available with get | nput | mage(i nt i ndex).

Note

O

Do not use get Qut put | mage(i nt i ndex) from within
cal cul at eCQut put | magePr operti es() and it is not allowed to change the properties of
other output images than the one obtained as an argument.

Note

O

In case of processAl | Pages(-1), the out I ndex will equal -1 and out | rage will be the
temporary Pagedimage.

Input images and their properties within the cal cul at eQut put | magePr operti es() andcal cul at e*()
methods are always valid and thus do not have to be checked for validity.

Access methods to the image properties are defined in the classes | magePr operti es (Section 2.3.1
“ 1 mageProperties”), Medi cal | mageProperties (Section 2.3.2, “ Medi cal | nageProperties_”) and
Pagedl nage (Section 2.3.4, “ Paged| mage "):

* getl mageExt ent () and set | mageExt ent (),
e get BoxFrom nageExtent (),

* get PageExt ent () and set PageExtent (),

67

Deriving Your Own
Module from Module

e get Dat aType() and set Dat aType(),

» get M nVoxel Val ue() and set M nVoxel Val ue(),
* get MaxVoxel Val ue() and set MaxVoxel Val ue(),
* and many more.

If cal cul at eQut put | ragePr operti es() is not implemented, the properties of get | nput I rage(0) are
copied to the output image(s).

The following example shows how to set some of the most important properties of an output image.

voi d Exanpl eMbdul e: : cal cul at eQut put | mageProperti es(i nt outlndex, Pagedl mage* out | nage)

{
/1 Set inmage extent
out | mage- >set | mageExt ent (| nmageVect or (100, 100, 30, 3,1,1));

/] Set page extent
out | mage- >set PageExt ent (| mageVector (128,128,1,1,1,1));

/'l Set estimated min voxel value
out | mage- >set M nVoxel Val ue(0);

/1 Set estinmated nax voxel val ue
out | mage- >set MaxVoxel Val ue(255);

/] Set desired data type
out | mage- >set Dat aType(M_ui nt 8Type) ;

‘ Note

Setting minimum and maximum voxel values can sometimes be a difficult task because
page-based algorithms usually do not process the entire image and explicit testing of all
voxel values is impossible. Therefore the typical approach to solve this problem is to set
minimum and maximum voxel values in such a way that they include all voxel values that
could occur. The minimum/maximum range can be set to be larger than the real voxel
values in order to make things easier even when the minimum and maximum values become
very large. These values are considered to be hints and no reliable values. However, the
maximum value must always be equal to or greater than the minimum value.

When setting the properties of the output image(s), the following should be considered:

» Changing properties of output images is only legal inside the cal cul at eQut put | magePr operti es()
method.

» Page extends must be left unchanged unless it is really necessary to avoid performance drawbacks.
They must not set to the image's extend, since pages are usually inherited by subsequent modules,
and setting a too large page extend will degenerate the underlying page concept.

» The following code fragment must be used to invalidate/validate the output image at index out I dx:
/1 Invalidate the output inmage.

out | mage- >set | nval id();

/1 Validate the output inmage.
out | mage- >set Val i d();

This is only to be used in cal cul at eQut put | nagePr operti es()

3.1.7. Implementing cal cul at el nput Subl nageBox()

Before the algorithm can calculate the contents of an output page, the required data portion / block
from each input must be specified in cal cul at el nput Subl rageBox() . The algorithm must return

68

Deriving Your Own
Module from Module

that subimage region of the image at input i nl ndex that is needed to calculate the subimage region
out Subl ngBox of the output at index out | ndex:
virtual Subl nageBox cal cul at el nput Subl nageBox(i nt i nl ndex,

const Subl mageBox& out Subl ngBox,
int outl ndex)

/! Do the sane for all inputs and outputs:
/'l Get corners of output subinage.

const |mageVector vl = out Subl mgBox. v1;
const | mageVector v2 = out Subl mgBox. v2;

/1 Request a box frominput inmage which is shifted by 10 voxels to the left
/1 and 5 voxels to the front.

return Subl mageBox(| mageVect or (v1. x-10, v1.y-5, vi.z, vi.c, vi.t, vi.u),
| mgeVect or (v2. x-10, v2.y-5, v2.z, v2.c, v2.t, v2.u));
}

The code is shorter when vector arithmetics are used:

virtual Subl mageBox cal cul at el nput Subl nageBox(i nt i nl ndex,
const Subl mageBox& out Subl ngBox,
int outl ndex)

/! Request a box frominput inmage which is shifted by 10 voxels to the
/1 left and 5 voxels to the front.

)

return Subl mageBox(out Subl ngBox. v1+l mageVector (-10, -5, 0,0,0,0
out Subl ngBox. v2+l mageVector (-10, -5, 0,0,0,0))
}

If cal cul at el nput Subl mageBox is not implemented, the default implementation returns the unchanged
out Subl ngBox, i.e., if a certain region of the output image is calculated, the same region is requested
from the input image.

‘ Note
Requesting areas outside the input image is explicitly legal because this is often useful
when input regions need to be bigger than output regions, e.g., for kernel-based image
processing (Section 4.2.4, “Kernel-Based Concept”). However, image data requested from
outside an image region will be undefined.

3.1.8. Changes to cal cl nSubl magePr ops()

As with MeVisLab version 2.1, this method has been removed.

The properties of the input subimages (typically changes to the data type of in the input data before
processing them) need to be set now in the method cal cul at eQut put | magePr oper ti es() . This way,
the properties of the input subimages are set only once for each output image and not for each input
subimage request. Thus, the new way is faster and less error prone.

3.1.9. Implementing cal cul at eQut put Subl mage()

The ML calls this method to request the calculation of real image data or, to be more precise, to request
the calculation of one output page.

In out Subl ng, a pointer to a page of output image out | ndex is passed. The contents of that page need
to be calculated by the algorithm.

In i nSubl mys, the pointers to the input subimages are passed. These subimages contain the source
data and exactly the same image regions you requested in cal cul at el nput Subl mageBox() for the
output of index out I ndex. Note that the number of input subimages depends on the number of module
inputs; this number can be 0 if there are no module inputs (e.g., a Const | ng or a Load module).

virtual void cal cul at eQut put Subl mage(Subl nage *out Subl ng, int outlndex, Sublnmage *inSublngs){ ... }

69

Deriving Your Own
Module from Module

The data types of the input and output data can be any of the types supported by the ML, i.e., 8,16,32 or
64 bit integers, float, double or any of the registered data types. Implementing the algorithm to support
all these data types is generally difficult, especially because it is not known whether future ML versions
will contain other data types.

The solution to this problem is to implement a template function that is automatically compiled
for all data types. This, however, requires the correctly typed template function to be called from
cal cul at eCQut put Subl mage() . This should not be implemented by the module developer because
additional data types and optimizations could change that process.

A set of predefined macros is available, e.g., the following can be used if there is one module input and
the template function must be implemented in the C++ file.

M__CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_SCALAR TYPES_CPP(Exanpl eMbdul e) ;
The correct macro is built from
e the string M._CALCULATE_QUTPUTSUBI MAGE,

» the number of image inputs right behind this, coded as the string _NUM | NPUTS_*, where * is one of
0,1,2,3,4,5,10 0r N,

* the string _SCALAR_TYPES or _DEFAULT_TYPES if the data types of input and output subimages are the
same and the module shall either only support scalar types or the default voxel type set, or

+ the string _DI FFERENT_SCALAR | NOUT_DATATYPES or _DI FFERENT DEFAULT_| NOUT_DATATYPES
if different data types of input and output subimages shall be allowed (requires
using Pagedl mage: : set Dat aType() and Pagedl mage: : set | nput Subl mageDat aType() in the
cal cul at eQut put | magePr operti es() method). Again this either only supports only scalar types or
the default voxel type set. Note that all the subimages for each input image still must have the same
data type, only the types between input and output subimages can differ,

* alternatively you can have the string _W TH_CUSTOM SW TCH (or
DI FFERENT| NOUT_DATATYPES_W TH_CUSTOM SW TCH) if a subset of certain data types shall
be allowed only as input data types. There are a number of predefined macros for the
switches available, such as M__I MPLEMENT_FLOAT_CASE for all floating point data types or
M__| MPLEMENT_COMPLEX_CASES for complex data types, and the user can implement new data type
switches as well.

» The whole macro must end with the string _CPP if the C++ file implementation is used. If the header
file implementation is used, no special ending string needs to be provided.

» As arguments for the macro, the class name of the module needs to be provided and if the macro
should support a subset of custom data types, the macro that implements the switch for those data
types needs to be provided as well.

‘ Note
 Particular attention must be paid to the exact name of the template function implemented
for the macro (cal cul at eQut put Subl mage or cal cul at eQut put Subl mage T), as well
as to its number of template and parameter arguments to avoid annoying compilation
problems.

Many compilers only check the signature of the template functions in the header file; so
it must be made sure that the function signatures in the header and cpp files are
identical.

» One might expect macros for more than two data types: type 1 for the output subimage,
type 2 for input subimage 0, and type 3 for input subimage 3. If you need this degree of
control, you should switch to typed output handlers, which are more flexible in this regard.

70

Deriving Your Own
Module from Module

It is also possible to specify a subset of data types (e.g., only integer, only float data, only standard data
types) which will not be discussed here. See Section 7.5.3, “Reducing Generated Code and Compile
Times” and the file m Modul eMacros. h for more information.

Important

If not specified otherwise, the input subimages have always the same data type as the
output subimages. However, the data type for the input subimages can the changed for
each input image.

To change the data type for a certain input image (and therefor for each of its subimages),
you need to implement this in the method cal cul at eQut put | magePr operties().

The template function with the algorithm can be implemented as follows:

tenpl ate <typenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eCut put Subl nage(TSubl nage<DATATYPE> * out Subl ng,
int outlndex,
TSubl mage<DATATYPE> *i nSubl ngO0,
TSubl mage<DATATYPE> *i nSubl ngl)
{
/...

}

In this template function, the algorithm calculates the output page out Sublng from the input
page(s) inlngl and inlng2. This method is instantiated for each data type. The method
cal cul at eQut put Subl mage calls this function by searching the correct data type and by calling
the correctly typed template version. It is automatically implemented by the corresponding
M__CALCULATE_QUTPUTSUBI MAGE macro.

The number of typed input subimages depends on the used macro, e.g., for zero inputs

tenpl ate <typenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eQut put Subl mage(TSubl mage<DATATYPE> *out Subl ng, int outl ndex)
{

/...

}

for four inputs

tenpl ate <typenane DATATYPE>

voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl mage<DATATYPE> *out Subl ng,
int outlndex,
TSubl mage<DATATYPE> *i nSubl ngO,
TSubl mage<DATATYPE> *i nSubl ngl,
TSubl mage<DATATYPE> *i nSubl ng2,
TSubl mage<DATATYPE> *i nSubl ng3)

{

/...
}

and for a dynamic number of inputs

tenpl ate <typenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl nage<DATATYPE> * out Subl ng,
int outl ndex,
TSubl mage<DATATYPE> **i nSubl ngs)
{
/1. ..

}

For two inputs and different input and output image data types:

tenpl ate <typenane ODTYPE, typenane | DTYPE>
voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl mage<ODTYPE> * out Subl ng,
int outl ndex,
TSubl mage<I| DTYPE> *i nSubl ngO,
TSubl mage<I DTYPE> *i nSubl ngl)
{
/...

}

This copies voxel by voxel from the input subimage to the available output subimage, e.g., with the
macro M._ CALCULATEOUTPUTSUBI MAGE_NUM | NPUTS_1_SCALAR_TYPES_CPP(Subl ngExanpl eMbdul e) :

71

Deriving Your Own
Module from Module

tenpl at e <t ypenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eQut put Subl mage(TSubl mage<DATATYPE> *out Subl ng,
int /*outlndex*/,
TSubl mage<DATATYPE> *i nSubl ng0)
{
/| Copy overl apping data from i nSubl ng0 to out Subl ng.
out Subl ng- >copySubl mage(*i nSubl ng0) ;
}

Note that the classes TSubl mage and its base class Subl mage provide a number of other typed and
untyped copy, fill and access methods for subimages and their data.

This implements a voxel-wise copy from the input subimage to the output image, keeping track of the
coordinate of the copied voxel:

tenpl ate <typenane DATATYPE>

voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl mage<DATATYPE> * out Subl ng,
int /*outlndex*/,
TSubl mage<DATATYPE> *i nSubl ng0)

/1 Determ ne overl apping and valid regions of page and i nage, because the
/'l page could reach outside valid inage region.

const Subl mageBox box = i nSubl ng0- >get Val i dRegi on() ;

/1 Traverse all voxels in box
| mgeVector p = box.vi;
for (p.u = box.vl.u; p.u <= box.v2.u; ++p.u) {
for (p.t = box.vl.t; p.t <= box.v2.t; ++p.t) {
for (p.c = box.vl.c; p.c <= box.v2.c; ++p.c) {
for (p.z = box.vl.z; p.z <= box.v2.z; ++p.z) {
for (p.y = box.vl.y; p.y <= box.v2.y; ++p.y) {

/Il Set x coordinate of first voxel in row

p. X = box. vl.X;

/] Get pointer to input voxel at position p.

const DATATYPE * inPtrO
DATATYPE * out Ptr

i nSubl ng0- >get | magePoi nt er (p) ;
out Subl nmg- >get | magePoi nt er (p) ;

/1 1 nplenent inner |oop without function calls and use
/'l pointer iterations for a better perfornance.

for (; p.x <= box.v2.x; ++p.x) {
*outPtr = *inPtrO; // Copy input voxel to output voxel.
++out Ptr; /'l Move both voxel pointers forward.
++i NPt rO0;

The following code fragment shows the implementation for one input and one output of different types
for input and output subimages. The macro

M.__CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_DI FFERENT_SCALAR _| NOUT_DATATYPES_CPP(Exanpl eModul e)

is used for that in addition of change of the data type in the cal cul at eQut put | magePr oper ti es method:

/1! Select either Mint64 or Mdouble as output type.
voi d Exanpl eMbdul e: : cal cul at eCut put | negeProperti es(int outlndex, Pagedl nage* out | nage)

if (MIslntType(outl mage- >get Dat aType()))

/1 Use int64 instead of any other int type.
out | mage- >set Dat aType(M.i nt 64Type) ;
}

el se

/'l Use double for all other types.
out | mage- >set Dat aType(M_doubl eType) ;
}

72

Deriving Your Own
Module from Module

/! Set the data type of the input inmage to the input subinmages

/1 instead of the data type of the output inmage (which is the default).

out | mage- >set | nput Subl mageDat aType(0, get | nput| mage(0)->get Dat aType());
}

/1! Inplement the calls of the right tenplate cal cul at eCut put Subl mage code
/1! for the current inmage data type for all data type conbi nations.

M._CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_DI FFERENT_SCALAR | NOUT_DATATYPES_CPP(Exanpl eMbdul e) ;

tenpl ate <typenane ODTYPE, typenane | DTYPE>

voi d Exanpl eMbdul e: : cal cul at eQut put Subl mage(TSubl mage<ODTYPE> *out Subl ng,
int /*outlndex*/,
TSubl mage<| DTYPE> *i nSubl ng0)

/1 Determ ne overl apping and valid regions of page and i nage, because the
/| page could reach outside the valid image region.

const Subl mageBox box = i nSubl ng0- >get Val i dRegi on();
/1 Traverse all voxels in the box

| mgeVector p = box.vi;
for (p.u = box.vl.u; p.u <= box.v2.u; ++p.u) {
for (p.t = box.vl.t; p.t <= box.v2.t; ++p.t) {
for (p.c = box.vl.c; p.c <= box.v2.c; ++p.c) {
for (p.z = box.vl.z; p.z <= box.v2.z; ++p.z) {
for (p.y = box.vl.y; p.y <= box.v2.y; ++p.y) {

/! Set x coordinate of first voxel in row and
// get pointer to input voxel at position p.

p. x = box.vl. x;
const IDTYPE * inPtrO
ODTYPE * out Ptr

i nSubl ng0- >get | magePoi nter (p);
out Subl ng- >get | nagePoi nt er (p);

/1 I nplement inner |oop wthout function calls and use
/] pointer iterations for a better performance. Use a
/'l cast to convert voxel types warn free.

for (; p.x <= box.v2.x; ++p.Xx)

{

/1 Copy input voxel to output voxel.
*outPtr = static_cast<CODTYPE>(*inPtro0);
/1 Move both voxel pointers forward.

++out Ptr;
++i nPtrO0;

An implementation with fixed input/output types and without templates or macros is also possible if the
programmer takes care of correct TSubl mage for the fixed types:

/1! Always sel ect M.int32 as output type.
voi d Exanpl eMbdul e: : cal cul at eCut put | megeProperti es(i nt outlndex, Pagedl nage* out | nage)
{

out | mage- >set Dat aType(M.i nt 32Type) ;

/1 Al ways sel ect M.doubl e as voxel type for input subinages.
out | mage- >set | nput Subl mageDat aType(0, M.doubl eType);
}

/1! Inplement explicitly the copy fromthe double typed input
/1! buffers to the int32 typed output subinage.
voi d Exanpl eMbdul e: : cal cul at eCut put Subl nage(Subl nage *out Subl ng,
int /*outlndex*/,
Subl mage *i nSubl ngs)
{

/'l You can use either the untyped copySubl nage() nethod:

73

Deriving Your Own
Module from Module

out Subl ng- >copySubl mage(i nSubl ngs[0]) ;

/1 ... or build typed subi mages fromthe untyped ones and i npl enent
/1 |l oops as in previous exanples on typed oSublng and i Subl ng.

TSubl mage<M.i nt 32> oSubl ng(* out Subl ng) ;
TSubl mage<M_doubl e> i Subl ng(i nSubl ngs[0]) ;

/1 ... inplenent voxel |oop as in previous exanples here

}

See Section 3.1.17, “Processing Input Images Sequentially” and Section 7.2.3, “Examples with
Registered Voxel Types”, and ML example codes in MeVisLab for further and advanced examples of
cal cul at eQut put Subl mage() implementations.

Important

Subimages contain a set of image properties that can be useful for programming. However,
it would require a significant effort to calculate the mi nVoxel Val ue(), naxVoxel Val ue()
and isValid() properties correctly for each cal cul ateQutput Subl mage() call,
and therefore they are neglected. They must be retrieved from input image
get | nput | mage(i nl mgl dx) when needed.

Tip

Have a close look at the class TSubl mage (Section 2.3.5, “Subl mage/TSubl nage”) and at
Chapter 4, Image Processing Concepts before you begin to implement more functionality
in cal cul at eQut put Subl mage() . Most of the standard functionality, like subimage and
voxel filling, copying, overlapping, cursor positioning, value reading/setting, etc. are already
implemented there and can be used to simplify your work considerably.

Many problems (and solutions) like global input image access in pages etc. are discussed
there as well.

3.1.10. Handling Disconnected or Invalid Inputs by
Overloading handl el nput ()

By default, a module's Modul e: : cal cul at e* methods are not called when any of its input images are
disconnected or connected to an invalid image. This, however, is desired in some cases, e.g., to support
optional input images or when implementing a Sw t ch module that has multiple inputs and only a few
of them are connected and valid, while only one of the images shall be passed to the output image.

To support disconnected or invalid input images, one has to overload the following method:

virtual | NPUT_HANDLE handl el nput (i nt inlndex, |NPUT_STATE state) const;

Whenever an input is disconnected or invalid while it is being accessed, the ML internally calls
handl el nput () with the current input state and requests how to handle this situation. ask for a task
with that input. There are some cases to be handled when input at index i nl ndex is accessed via a
Modul e method:
* The input is connected and valid.

Normal image processing takes place, and the handl el nput () method is not called.

» The input is disconnected or connected but invalid after trying to update its properties. This case is
notified by the parameter st at e with value DI SCONNECTED or CONNECTED_BUT_| NVALI D.

There are two possibilities:

< handl el nput () returns | NVALI DATE and no image processing can take place (which is the default).

74

Deriving Your Own
Module from Module

« handl el nput () explicitly allows an invalid input image by returning ALLOW | NVALI D_I NPUT. Image
processing will continue and get | nput I rage(i nl ndex) will return NULL for that index. The ML
Host will not request data from this image and subimages passed to cal cul at eQut put Subl mage
will be empty for that input image.

Important

handl el nput () must return a unique value for each input configuration. Input handling
cannot change during the lifetime of the Modul e instance. If it changes, image processing
may become instable.

. Note
Disconnected and connected but invalid inputs can be handled differently by using the
passed st at e, although is does not make sense in most situations.

3.1.10.1. Checking Module Inputs for Validity

When looking at a module's input, it may have one of the following states (of enum type | NPUT_STATE):
» DI SCONNECTED - no image is connected.
» CONNECTED_AND_VALI D- an image is connected and it is valid.

e CONNECTED BUT_I NVALI D - an image is connected but invalid, even after trying to update its
properties.

» CONNECTED_BUT_NEEDS_UPDATE - an image is connected but its properties are out of date and need
updating. After the update, it may become valid or invalid.

This state can be requested via the following method:

I NPUT_STATE *get | nput St at e(i nt inl ndex)

If the input image should be updated as well, you may use:

I NPUT_STATE *get Updat edl nput St at e(i nt i nl ndex)

which will never return CONNECTED BUT_NEEDS_UPDATE, since it will update the image properties if an

update is required.

The Modul e class provides a method to handle the getting of updated input images.

Pagedl nage *get Updat edl nput | mage(int i, bool getReal =fal se)

This is a convenience method for accessing the input image at index i . If there is any possibility to
get a valid and accessible input image, this method will return a pointer to its Pagedl nage, otherwise
NULL is returned.

3.1.11. Configuring Image Processing Behavior of the
Module

The Modul e class offers some further methods to control image processing behavior. The following
sections describe these features.

3.1.11.1. Inplace Image Processing

In some image processing algorithms the input and output pages have the same extent and data
type. Hence, the algorithms might only need one buffer which is input and result (i.e. output) at the
same time instead of having different buffers for the input and the output pages. Typical algorithms are
e.g lookup, thresholding or arithmetic operations. You can instruct the ML to use only one buffer by

75

Deriving Your Own
Module from Module

calling the set Qut put | magel npl ace(i nt outlndex=0, int inlndex=0) method, because that avoids
unnecessary buffer allocating and memory copying. Furthermore, the CPU does not need to switch
between different memory areas which improves prefetching. The following methods are available to
enable inplace operation for the cal cul at eQut put Subl nage() method:

/1! Set optimzation flag: |If calculating a page in cal cul at eQut put Subl nage()

/1! the output inage page of output outlndex shall use the same

/1! menory as the input page of input inlndex. So |ess allocations occur

/1! and the read and witten buffer are identical. Usually only useful for

/1! pixel operations or algorithms which do not nodify the inage data.
/1! Setting inlndex = -1 disables inplace optimzation for the given outputl ndex.

protected: void setCutputlnagel npl ace(M.int outlndex=0, M.int inlndex=0);

/1! Cear optimzation flag: output page of output and input tile shall
/1! use different nenory buffers in cal cul at eQut put Subl mage() .
/1! This is an equival ent to setQutputl magel npl ace(outlndex, -1).

protected: void unsetQut putl magel npl ace(M.i nt out | ndex=0) ;

/1! Return optimzation flag: Return index of input inmage whose input tile

/1! is used al so as output page for output outlndex in cal cul at eCut put Subl mage()
/1! (instead of allocating its ow nenory). If inplace calculation is off

/1! then -1 is returned.

public: M.i nt get Qut put | magel npl ace(M.i nt out | ndex=0) const;

Note

» This mode is normally configured in the constructor but it can also be changed
in the handl eNoti fication() method. It is not recommended to change it in any
cal c*() method.

 The module cannot request the input image as a memory image by using
Paged! nage: : set | nput Subl mageUseMenor yl mage() if inplacing is activated. The ML
will post errors in this case.

« The module still calls the cal cul at eQut put Subl rage() method with the same
parameters as for non-inplace operation. However, the data pointers of the passed input
and output subimages will point to the same memory area for the inplaced input and
outputs. This may help to implement the algorithm more efficiently. However, it also needs
to be considered that read and written buffers are the same for writing operations.

3.1.11.2. Bypassing Image Data

Some modules only change image properties, but do not modify actual image data. Examples of
such algorithms are the Swi tch or the Bypass modules which only propagate data. Nor does the
I magePr opert yConvert modify the image data when using its default behavior.

In this case, it is useful to avoid pages being processed by the module or being cached at the module's
output. This reduces the amount of memory copies and the number of pages stored in the ML cache,
i.e., the memory load of the application using these modules is reduced.

This feature can be configured by the following two methods (similar to the set Qut put | magel npl ace()
method) :

/1! Sets the input inage whose pages can al so be used instead of output pages
/1! to avoid recal cul ations. Setting an inlndex of -1 disables bypassing

/1! (which is the default).

/1! Bypassing require i nage (data) content, inage extent, page extent and

/1! voxel data type ro renmi n unchanged, or errors will occur.

protected: void setBypass(M.int outlndex=0, M.int inlndex=0);
/1! Returns the currently bypass index or -1 if bypassing is disabled (default).

/1! Bypassing require innage (data) content, inage extent, page extent and
/1! voxel data type to renmmi n unchanged, or errors will occur.

76

Deriving Your Own
Module from Module

public:

M.i nt get Bypass(M.i nt out | ndex=0) const;

Note

» This option is not available in MeVisLab versions previous to 1.6 or in ML versions

previous to 1.7.59.19.76.

This mode is normally configured in the constructor but can also be changed in the
handl eNoti fi cati on() method. It is not recommended to change it in any cal c*()
method.

The module must still implement cal cul at eQut put Subl mage to calculate output pages,
because the ML core cannot use bypassing in all situations. This can easily be done
by activating the inplace mode and implementing cal cul at eQut put Subl nage() as an
empty method.

The module must not change the extent, voxel type or page extent of the image, because
pages connected to the input image must have exactly the same memory layout as the
pages calculated by the module. So do not modify any of these image properties in
the cal cul at eQut put | magePr operti es() method when you have enabled bypassing.
If you do, the ML will post errors.

3.1.11.3. Multithreading: Processing Image Data in Parallel

The ML supports multithreading, i.e., it can perform image processing tasks in parallel if supported
by the module's algorithm. Currently, only the cal cul at eQut put Subl mage() method of Modul e (or its
overloaded method) is called in parallel. The following Modul e method and enumerator values are used
to activate parallel computation:

/1! Pass any THREAD SUPPORT node to decide whet her and what type of nultithreading
/1! is supported by this nodul e. See THREAD SUPPORT for possible nodes.

voi d set Thr eadSupport (THREAD_SUPPORT support Mbde) ;

/1! Enunerator deciding whether and which type of nultithreading
/1! is supported by this nodul e.

enum THREAD_SUPPORT {

/1! The nodule is not thread safe at all.
NO_THREAD_SUPPORT,

/1! cal cul at eCut put Subl nage i s thread-safe for scal ar voxel types.
M__CALCULATE_OUTPUTSUBI MAGE_ON_STD_TYPES,

/1! cal cul at eCut put Subl nage is thread-safe for all voxel types.
M__CALCULATE_OUTPUTSUBI MAGE_ON_ALL_TYPES,

-

Note

« This option is not available with enumeration values in MeVisLab versions previous to

1.6 or in ML versions previous to 1.7.59.19.76. They only provide enabling or disabling
multithreading with 1 or 0 as parameters for images with standard (scalar) voxel types.

» This mode is normally configured in the constructor but can also be changed in

the handl eNoti fication() method. It is not recommended to change it in any
cal c*() method.

Important

Since multithreading errors are often difficult to debug, it must be made sure that algorithms
are really thread-safe before the multithreaded execution of cal cul at eQut put Subl nage()
is enabled.

77

Deriving Your Own
Module from Module

To ensure thread-safe operations, it must be possible to execute many parallel versions of the algorithm
without modifying shared data. Local variables, for example, are normally thread-safe, because they
are stored in the local stack of the concerning thread. If parallel access to shared objects is required,
special synchronization mechanisms must be used. The ML makes use of the boost : : t hr ead libary
and provides simple wrappers in the header files m Thread.h , ml Mutex.h ,and m Barrier.h as
well as Section 3.1.11.3.1, “How to Implement Thread-Safe Code Fragments” for more information.

An algorithm (or to be more precise: cal cul at eQut put Subl mage()) is not thread-safe
* when it is not reentrant.

 when non-local variables are written without synchronization like mutex locking (see
Section 3.1.11.3.1, “How to Implement Thread-Safe Code Fragments”).

» when any stream, debug or other console output is used; so do not use methods like st d: : cout,
std::cerr orprintf.Itis safe touse nl Debug, M Warni ng, M Error and m | nf o.

* when fields are accessed.

» when get Ti | e() methods are called from within cal cul at eQut put Subl mage() . Thisis alsot r ue for
Vi rt ual Vol urre classes, because they use get Ti | e internally.

In most (but not all!) cases, it is legal to modify and use the following objects in the implementation of
cal cul at eQut put Subl mage:

» Non-static local objects of the function if they are marked as re-entrant classes (e.g., | mageVect or,
Subl mageBox , Vect or 2, ..., quat er ni ons, etc.),

« functions and methods if they do not modify data like constant get functions, read access to members,
etc.,

« the input and output subimages passed to cal cul at eQut put Subl nage because they are thread-local
objects (with the exception of input buffers using Menor yl mage),

e all methods of input and output Sublmage and TSublnmage objects passed as
cal cul at eCut put Subl nage parameters.

The following two sections discuss strategies of how to implement thread-safe code.
3.1.11.3.1. How to Implement Thread-Safe Code Fragments

In some cases, it might be useful to modify objects from within the cal cul at eQut put Subl mage function
although itis called in parallel by the ML. This, for example, happens when statistical values are summed
up from all pages and composed in members of the class. The most typical solution to this problem is
to protect a code fragment against parallel execution with a so-called mutex implemented as a member
of your class. Include m Mutex. h for such code.

#i nclude "nm Mut ex. h"

M._START_NAMESPACE

cl ass M__EXAMPLE_PRQIECT_EXPORT Exanpl eModul e : public Mdul e
{ ...

private:

/1! The nutual exclusion object to protect a code fragnent.
Mut ex _nut ex;

/1 The nmenber or object to be protected against parallel nodification.
int _nyMenber ;

Il

tenpl ate <typenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl mage<DATATYPE> *out Subl ng,

78

Deriving Your Own
Module from Module

i nt outlndex,
TSubl mage<DATATYPE> *i nSubl ng)

doubl e voxVal = 0;

/] TODO Here the | oop cal cul ates "voxVal"...

{

Lock(_mut ex) ;

/! This area is protected against parallel execution. The area between

/1 1ock() and unlock() is entered only by one thread at once; another thread
/1 will not pass lock() until the current thread has passed unl ock().

_nyMenber += voxVal;

}

Il
}

M__END_NAMESPACE

Note

The class Mut ex was not available in MeVisLab versions previous to 1.6 or in ML versions
previous to 1.7.59.19.76; the corresponding classwas m Cri ti cal Sect i on. Please refer
to the documentation in the ML class reference for details.

The mutex class provided by the ML allows the current thread to reenter the same section
recursively, and counts the number of (un)lock operations. Careful use of this behavior
is strongly recommended because mutex classes from other libraries might handle this
differently.

Protecting code fragments with Mut ex. | ock() and Mut ex. unl ock() is often time-critical.
Hence, information should be collected in local variables (especially from inner loops, like
voxVal in the above example) and the result should be written into shared members only
once in a protected region (typically at the end of the function).

The ML currently provides only mutex locking as a synchronization mechanism for
multithreading although it is not the solution to all synchronizing/protection problems. It is
recommended not to use multithreading when more complex mechanisms are needed.

It is also recommended to be familiar with multithreaded programming before using it,
because errors in that area tend to be hard to find and difficult to debug. For safety
reasons, do not enable multithreading if there are any doubts.

Since thread management requires overhead, it is recommended to test performance
after activating multithreading to make sure that execution is really faster.

3.1.11.4. Processing Images of Registered Voxel Types

The ML supports processing of images with non-scalar and user-registered voxel types. See Chapter 7,
Registered Voxel Data Types for detailed information on activation. In the default setup of an ML module,

this feature is disabled and must be activated by the programmer when needed:

enum PERM TTED_TYPES {

/1" Allows only scal ar voxel types, the default.
ONLY_SCALAR TYPES,

/1! Enables all scalar voxel types and a default set
/1! of extended voxel types |ike conplex nunbers and
/1! sone vector and natrix types.
ONLY_DEFAULT_TYPES,

/1! Enables all voxel types registered for the M.
ALL_REG STERED TYPES

79

Deriving Your Own
Module from Module

/1! Specifies which types this nodul e supports. Default
/1! is ONLY_SCALAR TYPES.

voi d set Voxel Dat aTypeSupport (PERM TTED_TYPES per mTypes) ;

. Note
» Multithreading of registered voxel types is not available in MeVisLab versions previous
to 1.6 or in ML versions previous to 1.7.59.19.76.

e This mode is normally configured in the constructor but can also be changed in
the handl eNotification() method. It is not recommended to change it in any
cal c*() method.

Important

Using registered voxel types in multithreaded modules requires additional care by the
programmer. See Section 3.1.11.3, “Multithreading: Processing Image Data in Parallel” for
details.

3.1.12. Explicit Image Data Requests from Module
Inputs

Sometimes it might be useful to explicitly request image data from a module input. The Mbdul e provides
some functions to do so. In such functions, a data type and a subimage from the input can be specified
to get an explicit copy of that region in memory. This is also permitted in cal cul at eQut put Subl mage(),
because a copy is needed for extraordinary image requests (which, however, requires multithreading for
that module to be disabled). Note that the following functions are also available in Paged! mage objects
that are returned by the get Updat edl nput | mage() and get | nput | mage() methods, shown as second
versions.

The following functions are available:

1. static M.ErrorCode Modul e:: getTil e(Modul e *op,
int out | ndex,
Subl mageBox | oc,
M.Dat aType dat aType,
voi d **dat a,

const Scal eShiftData &scal eShiftData =
Scal eShiftData());
or

M_Er r or Code Pagedl! nage: : get Ti | e(Subl mageBox | oc,
M.Dat aType dat aType,
voi d **dat a,

const Scal eShiftData &scal eShiftData =
Scal eShiftData());

This function requests a subimage region | oc from the image at output outIndex of module
op . The data is stored into memory with type dat aType and scaled with the settings specified in
scal eShi ft Dat a. dat a is avoi d* pointer; and there are two cases to distinguish. First, if the voi d*
pointer is NULL, the necessary memory for the subimage data is allocated and the voi d* pointer is
setto the allocated memory address. Second, if the pointer is not NULL, the memory address is used
to store the subimage data; the memory must be sufficiently large to avoid buffer overrun errors.

If the memory is allocated by the get Ti | e function, the memory needs to be released by MLFr ee()
(see freeTile() below).

2. static M.Error Code Modul e:: getTil e(Modul e *op,
int out | ndex,
Subl mage *subl ng,

const Scal eshiftData &scal eShiftData =
Scal eshiftData());
or
M_Er r or Code Pagedl nage: : get Ti | e(Subl nage &subl ng,
const Scal eshiftData &scal eShiftData =
Scal eshiftData());

80

Deriving Your Own
Module from Module

Generally, this function operates in the same way as the first version did. However, data type, data
pointer and subimage region are retrieved from subl nyg.

3. static M.Error Code Modul e:: getTil e(Modul e *op,
int out | ndex,
Subl mageBox | oc,
M.Dat aType dat aType,

M_Menor yBl ockHandl e &renor yBl ockHandl e,
const Scal eshiftData &scal eShiftData);
or
M_Er r or Code Paged| mage: : get Ti | e(Subl mageBox | oc,
M.Dat aType dat aType,
M_Menor yBl ockHandl e &renor yBl ockHandl e,
const Scal eshiftData &scal eShiftData);

This function generally also works in the same way as the first version. However, the data pointer is
retrieved from menor yBl ockHandl e and the allocated subimage is inserted into the current cache
tables.

4. Use the function freeTi | e() to release the memory allocated by get Ti | e() functions. It is safe
to pass NULL pointerstofreeTil e():
static void Mddul e::freeTil e(voi d* data);

or
voi d Pagedl nage: : freeTil e(voi d* data);

Important

Using one of the above functions requires the addressed module outputs or images to be
up to date. To test and/or to update outputs, Modul e: : get Updat edl nput | mage() should be
used. (See Section 3.1.10.1, “Checking Module Inputs for Validity”).

Example 3.1. Explicitly Requesting Image Data (as doubl e Voxels) from a Module
Input:
i f (getUpdatedl nputlnmage(inputNum) != NULL) {

/1 Pass NULL pointer for autonmatic nenory allocation when calling getTile().
voi d *dat a=NULL;

/'l Get unscal ed doubl e data from box w th subl ngCorner1l and subl ngCor ner 2.
const M.ErrorCode |ocal Err = getTile(getlnOp(inputNum, getlnOplndex(inputNum,
Subl mageBox(subl ngCor ner 1, subl ngCor ner 2),
M.doubl eType,
&dat a,
Scal eShiftData(1,0));

Il Test for general errors and for out of nenory.

if (local Err !'= M_RESULT_OK) {

if (M_NO_MEMORY == |ocal Err) {
m Error("Test Op:: | oadData", M._NO MEMORY) << "Qut of Menory!";
} el se{

m Error("TestOp::loadData", |ocal Err) << "Could not get input image tile!";
} else {

/1 Everything okay, we can use the data.

}

Il Free the allocated data and reset pointer.
freeTil e(data);
data = NULL;

3.1.13. Getting Single Voxel Values from Module
Inputs

Sometimes it is useful to request single voxel values from a module input. This can easily be done by
using the following Modul e function:

81

Deriving Your Own
Module from Module

Example 3.2. How to Get a Single Voxel Value from an Image as a String

static std::string getVoxel Val ueAsString(Mdule *op, int outldx, const |nmageVector &pos,
M_Er r or Code *err Code=NULL,
const std::string &rrResult="");

The function returns the voxel value at position pos of output out | dx of the module op as a standard
string. When an error occurs, errResul t is returned instead of the voxel value. err Code can be
passed as NULL (the default). Otherwise, errors are reported in *err Code or M._RESULT_(X is set. If
the requested voxel position is out of the image range, an empty string (") is returned and *r esul t
is setto M._RESULT_CK.

‘ Note
This function is a convenience function for single voxel access and uses getTil e()
calls internally, i.e., the function is not an efficient way to retrieve input image data. See
Section 3.1.12, “Explicit Image Data Requests from Module Inputs” or Section 2.3.7, “
Vi r t ual Vol ume ” when you need multiple or more efficient access methods.

3.1.14. Interrupting Page-Based Image Processing and
Handling Errors

In a well designed ML module class derived from Mdul e, there is normally no need to handle errors
in cal cul at eQut put Subl nage() or cal cul at el nput Subl mageBox() , because invalid parameters are
usually already handled or corrected in handl eNoti fi cati on() or the output image is invalidated in
cal cul at eQut put | magePr operti es() with out | mage- >set | nval i d() . Thisis the usual way to ensure
that further calls of other cal c¢* () methods do not have to operate with incorrect settings.

These error handling options, however, do not cover all potential error sources. When a module reads
data from a file in cal cul at eQut put Subl mage(), for example, a file 10 error could occur. Since no
cal c* () method offers return values and an invalidating of the output image is too late, there is only the
option to throw an exception. The following code fragment demonstrates how this can be implemented
in all cal c*() methods but cal cul at eQut put | magePr operties():

tenpl ate <typenane T>
voi d Exanpl eMbdul e: : cal cul at eCut put Subl mage(TSubl mage<T> *out Subl ng, int outlndex)

M_Er r or Code errCode = _| oader->get Ti | eFronFi | el nt oSubl ng(*out Subl ng) ;
if (ML_RESULT_OK != errCode) {

throw errCode; // Throw error to term nate | oadi ng process.

}
}

‘ Note
» The ML will return the thrown error code or a resulting one in the top-level get Ti | e()
command which caused this cal cul at eQut put Subl mage() call and will also post it to
the ML error handler. Processed pages will be all or partially invalid.

e Throwing errors in cal cul at eQut put Subl nage() should currently only be
used for failure recovery. If possible, try to handle or correct incorrect
parameters in handl eNotification() or to invalidate the output image in
cal cul at eQut put | mageProperties() to avoid errors before they can occur in other
cal c* () routines.

3.1.15. Testing for Interruptions During Calculations

In some algorithms, it might be useful to check whether a stop button has been pressed to provide the
option to terminate long calculations. The function

82

Deriving Your Own
Module from Module

/1! Checks if a notify button was pressed (outside of normal notification)
/1! 1t returns the notify field or NULL i f nothing was pressed. Note that
/1! nore than one field nay have been notified; so use a loop until NULL is
/1! returned to be sure that all NotifyFields have been checked.

Field *Modul e: : get PressedNoti fyFi el d();

performs such a check on naotify fields. A corresponding field can be created in the constructor:
NotifyField *_stopButtonFld; // Header

_stopButtonFld = addNotify("stop"); // |nplenentation

The following function checks whether the button has been pressed during operation:

bool stopPressed()

{
Field* field = NULL;

do {
field = getPressedNotifyField();

if (field == _stopButtonFld) {
return true;

}
} while (field !'= NULL);

return fal se;

}

An alternative way to check if processing should be terminated is to call

bool Mbdul e: : shoul dTerm nate();

This method returns true if any button has been pressed that was marked with gl obal Stop = true in
the MDL definition (even if it belongs to another modules), or if the stop button in the lower right corner
of the IDE main window was pressed.

. Note
» Both methods for break checking should not be employed inside of paged image
processing calculations, e.g., inside cal cul at eCut put Subl mage. These functions may
get called from other threads and the global stop mechanism represented by
shoul dTer ni nat e is applied to the image processing loop anyway.

Only use these methods if you start your own calculation loop from handl eNot i fi cati on.

» Checking for interruptions is system-dependent and requires the application using the
ML to set up the function Host : : set Br eakCheckCB() correctly. This is done correctly in
MeVisLab (the typical context where the ML is used), but might not be possible when
using the ML in standalone programs. So be careful when developing an algorithm, and
document in how far your algorithm requires this functionality.

» The check for interruptions set up by Host : : set BreakCheckCB() might be expensive
and might degrade the performance of the calling algorithm when it is called too often.

3.1.16. Adapting Page Extents

Normally, a programmer does not need to not care about the extent of pages, because import modules
such as | mageLoad normally set it up appropriately.

However, some modules change the extent of images or even generate new images that require the
calculation of new page extents. An appropriate extent of pages depends on many parameters, e.g.,
on the dimension of an image, its extent, whether it uses colors, the types of algorithms processing it,
the number of processors or threads, the memory size or even whether it is processed on a 32 or 64
bit system. The following convenience function implements a heuristic to provide an appropriate page
extent:

83

Deriving Your Own
Module from Module

/1! Adapt page extent. Argunents are:

/1! - pageExt: Suggest ed page extent (e.g., of input inmage), overwitten
/1) by new page extent
/1! - ingType: Data type of output inmage

/1! - newl ngExt: Extent of output inage
/1! - oldlngExt: Extent of input inage

/1! - pageUnit: Page extent nust be a multiple of this, or

/2! | mgeVector (0) if do not care

/1! - m nPageExt: M ni num page extent, or |nmageVector(0) if do not care
/1! - maxPageExt: Maxi num page extent, or |nmageVector(0) if do not care

static voi d Mdul eTool s: : adapt PageExt ent (| mageVect or &pageExt,
M.Dat aType i ngType,
const | mageVect or &new ngExt,
const | mageVector &ol dl ngExt,
const | mageVector &pageUnit
const | mageVect or &nmi nPageExt
const | nmageVect or &raxPageExt

| mageVect or (0),
| mageVect or (0),
| mgeVect or (0)) ;

' Note
The correct position to call the convenience function is inside the method

cal cul at eQut put | magePr operti es(), because all the properties of output images are
specified there.

3.1.17. Processing Input Images Sequentially

Certain algorithms are hard to implement with the image processing methods presented so far. These
are algorithms that are applied to an image to only "extract" information instead of modifying the image
data. Such algorithms need a special call due to the fact that the extraction of information is not triggered
page-wise by any consuming module.

For this purpose, the following special Modul e method can be called:

M_.Er r or Code processAl | Pages(int outlndex = -1)

This method processes all pages of an image and allows for an easy implementation of page-based
image processing algorithms on entire images. Internally, all pages of the output image with index
out | ndex are requested as from a connected (consuming) module.

A common image processing is executed with the following deviations:

* If outlndex is -1, a temporary output image with the same negative index -1 is created and
cal cul at eQut put | magePr operties() is called with an out I ndex of -1 and the temporary output
image as out | mage. By checking for outindex == -1, it can be detected if the call was initiated by
processAl | Pages() and the properties of the temporary output image can be adjusted as desired.
By default, the temporary output image has the properties of the first input image (at inputindex == 0).

e If outlndex is -1, as described in Section 3.1.9, “Implementing calculateOutputSublmage()”, the
output pages must not be written since no data is allocated for them to improve performance for pure
input scanning algorithms.

e The output index outlindex is passed to cal cul ateQutput Subl mage () and
cal cul at el nput Subl mageBox (), even if it is -1 (see Section 3.1.9, “Implementing
calculateOutputSublmage()” and Section 3.1.7, “Implementing calculatelnputSublmageBox()”). By
checking if the value is -1, you know that the output must not be written and that the call comes from
processAl | Pages() .

The return value is M._RESULT_OK on a successful operation, otherwise a code describing the error is
returned.

As in common page-based image processing, all pages of the input image(s) are requested from
the input(s) in order to process the (possibly not existing) output page. Thus multiple inputs can be
processed simultaneously with almost the same concept as it is done in common page processing. If

84

Deriving Your Own
Module from Module

only one input is to be scanned and if others are to be ignored, simply request empty page boxes for
those (see Section 3.1.7, “Implementing calculatelnputSubimageBox()”).

The following example demonstrates how to calculate the average of all voxels from input 0 whose
corresponding voxels from input 1 are not zero. Input 2 will be ignored:

Example 3.3. Average Calculation of Masked Voxels in a 3-Input Module

[x**xxxxxxx HEADER FI LE:

#i ncl ude "nl Modul el ncl udes. h"

M__START_NAVESPACE

cl ass Exanpl eModul e : public Mdul e
{

prot ect ed:
Exanpl eModul e() ;

virtual void handl eNotification(Field *f);
virtual Subl nageBox cal cul at el nput Subl nageBox(i nt i nl ndex,
Subl mageBox &out Box,
int /*outlndex*/);
virtual void cal cul at eQut put Subl nage(Subl mage *out Subl ng,
int outl ndex,
Subl mage *i nSubl ngs) ;
tenpl at e <typenane DATATYPE>
voi d cal cul at eQut put Subl nage(TSubl nage<DATATYPE> * /*out Subl ng*/,
int outl ndex,
TSubl mage<DATATYPE> *i nSubl ngo,
TSubl mage<DATATYPE> *i nSubl ngl,
TSubl mage<DATATYPE> * /*inSubl ng2*/);

private:
Noti fyField *_processPagesFl d;
| ong doubl e _voxel Sum

long int _voxel Num

M._MODULE_CLASS HEADER(Exanpl eMbdul €) ;
i

M._END_NAVESPACE
e GoURGS [HIUE

M__START_NANMESPACE

M._MODULE _CLASS_SOURCE(Exanpl eMbdul e, Modul e) ;

Exanpl eModul e: : Exanpl eModul e(): Mdul e(3, 1)
{

}

voi d Exanpl eMbdul e: : handl eNot i fication(Field *f)

_processPagesFl d = addNoti fy("ProcessPages");

if (f == _processPagesFld) {
_voxel Sum = 0;
_voxel Num = 0;

processAl | Pages(-1);

if (_voxel Num!= 0) {

m Debug(" Masked Average:" << _voxel Sunf _voxel Nun);
} else {

m Debug(" No masked voxel s");

}
}

Subl mageBox Exanpl eMbdul e: : cal cul at el nput Subl mageBox(i nt i nl ndex,
Subl mageBox &out Box,
int /*outlndex*/)

{

/'l Request page boxes frominputs O and 1 and get enpty
/1 region frominput 2.

85

Deriving Your Own
Module from Module

if (inlndex == 2){

return Subl mageBox();
} else {

return out Box;
}

}

/1 Inplement the calls of the right tenplate code for the
Il current inmage data type.

M__CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_3_SCALAR_TYPES_CPP(Exanpl eNbdul e) ;

tenpl ate <typenane DATATYPE>
voi d Exanpl eMbdul e: : cal cul at eQut put Subl mage(TSubl mage<DATATYPE> * /*out Subl ng*/,
int outl ndex,
TSubl mage<DATATYPE> *i nSubl ngO,
TSubl mage<DATATYPE> *i nSubl ng1,
TSubl mage<DATATYPE> * /*inSubl ng2*/)

/'l Get valid page box clanped to valid image regions. Then
Il scan all voxels in box.
Subl mageBox box = i nSubl ng0- >get Val i dRegi on();

| mageVector p = box.vil;
for (p.u = box.vl.u; p.u <= box.v2.u; ++p.u) {
for (p.t = box.vl.t; p.t <= box.v2.t; ++p.t) {
for (p.c = box.vl.c; p.c <= box.v2.c; ++p.c) {
for (p.z = box.vl.z; p.z <= box.v2.z; ++p.z) {
for (p.y = box.vl.y; p.y <= box.v2.y; ++p.y) {

p. X = box.vl.x;
DATATYPE* i OP = i nSubl ng0- >get | magePoi nter (p);
DATATYPE* i 1P = i nSubl ngl- >get | magePoi nter (p);

for (; p.x <= box.v2.x; ++p.x){
if (*i1P!=0) {
/1 Sum up masked voxel s
++_voxel Num

_voxel Sum += *i OP;

}

/1 Move input pointers forward.
++i OP; ++i 1P;

M.__END_NAMVESPACE

3.1.18. Traps and Pitfalls in Classes Derived from
Module

This section discusses typical errors in programming image processing filters derived from Mdul e:
Typical errors are

» to forget to implement M__MODULE CLASS SOURCE, M._MODULE CLASS HEADER or to call the
i ni td ass() function (mostly in the Init file of the dll/shared object). It registers the class in the runtime
type system of the ML. In MeVisLab, also a .def file with the M_Mbdul e entry and the correct DLL
tag must exist.

This causes e.g., MeVisLab to not being able to detect or create the module on a network.

« to forget to overload the virtual method act i vat eAt t achment s() in your module if non-field members
in the class depend on field settings.

This leads to incorrectly restored module networks, e.g., in MeVisLab. See Section 3.1.3, “Module
Persistence and Overloading activateAttachments()” for details.

86

Deriving Your Own
Module from Module

to forget to suppress calls of the method handl eNot i fi cati on() while fields in the constructor are
added and initialized.

This causes calls of handl eNoti fi cati on() with unexpected results or crashes during module
initialization. Use the methods handl eNot i fi cati onCf f () and handl eNoti fi cati onOn() around
the initialization area of fields in the constructor.

to forget to connect input connector or other fields with the output connector fields if an automatic
update of the output image is desired when these fields change.

This often leads to output images that are not or only partially up to date or that do not update correctly
on parameter/field changes.

to change the number of inputs in the superclass call of Module (e.g., Wd ass(...)
Modul e(num nputs, nunCut puts)) and to forget to change the M._CALCULATE QJTPUTSUBI MAGE
macro and the parameters of the cal cul at eQut put Subl mage() template.

This problem is not detected by some compilers and leads to empty or missing implementations of
cal cul at eCut put Subl mage() .

to enable the thread support without an explicit check whether cal cul at eQut put Subl mage() is really
thread-safe.

See Section 3.1.11.3, “Multithreading: Processing Image Data in Parallel” for details.

to change the properties of output images outside the cal cul at eQut put | nagePr operti es() method
or even from inside other cal c* methods.

See Section 3.1.6, “Implementing calculateOutputimageProperties()” for details.

to forget to check the validity of the input images or connectors when accessing inputs in
handl eNoti fication().

Use get Updat edl nput | rage() to check and get the input image correctly. Note that the ML
guarantees valid inputimagesin all cal c* methods. This permits the access of these images directly
with get I nput | mage(i dx) without further validity checks. See Section 3.1.10.1, “Checking Module
Inputs for Validity” and Section 3.1.10, “Handling Disconnected or Invalid Inputs by Overloading

handlelnput()” for more details.

to forget to clip the extent of the processed output page in cal cul at eQut put Subl mage() against the
extent of the output image.

Since pages can reach outside the image, unused regions are processed and possibly read from the
input buffers. Although it is not an error to fill regions of the output page that reach outside the image,
it is useless and adversely affects performance. The problem can simply be solved by clipping the
region of the processed output page against the output image region:

const Subl mageBox boxToProcess = out Subl ng- >get Val i dRegi on() ;

to forget that a Subl mageBox has two corners v1 and v2 which both are part of the described region.
Empty regions are denoted by any component in v2 which is smaller than the corresponding one in v1.

Hence, to process the region box "<=" comparisons are needed in the loops over all dimensions:
| mageVector p = box.vi;

for (p.u = box.vl.u; p.u <= box.v2.u; p.ut++) {
for (p.t = box.vl.t; p.t <= box.v2.t; p.t++) {
for (p.c = box.vl.c; p.c <= box.v2.c; p.c++) {
for (p.z = box.vl.z; p.z <= box.v2.z; p.z++) {

for (p.y = box.vl.y; p.y <= box.v2.y; p.y++) {

for (p.x = box.vl.x; p.x <= box.v2.x; p.x++) {
...

}

}

87

Deriving Your Own
Module from Module

}
}
}
}

 to forget that the default behavior of a Mdule class is to pass input data to
cal cul at eQut put Subl mage() which is of the type of the output image, even if the connected input
image has another voxel type. Hence, the input data might be cast implicitly. This typically simplifies
module programming and created code, because the type of input and output voxels are identical
and only one template argument is needed for cal cul at eQut put Subl mage() . Note that the default
behavior of a Modul e class is for the output image to inherit the data type of the input image which
minimizes data conversions and ensures that all modules process the same data type by default.

See Section 3.1.6, “Implementing calculateOutputimageProperties()” for details if you need to have
differently typed input and output buffers.

to forget that a dynamic number of input subimages implemented with a
M._CALCULATE_QUTPUTSUBI MAGE_NUM | NPUTS_*N* macro requires the implementation of the
template function cal cul at eQut put Subl mage with a T at its end. Otherwise, internal ambiguities with
other inherited Modul e methods appear.

88

Chapter 4. Image Processing
Concepts

Chapter Objectives
By reading this chapter you will understand how image processing in the ML is organized and you will
be able to differentiate your image processing algorithms between

» voxel-based or page-based (see Section 4.2.1, “Page-Based Concept” and Section 4.2.2, “Voxel-
Based Concept "),

slice-based (see Section 4.2.3, “Slice-Based Concept”),

kernel-based (see Kernel Progamming),

partially global approaches like

« random access (see Section 4.3.1, "Random Access Concept (Tile Requesting)”),

* sequential access (see Section 4.3.2, “Sequential Image Processing Concept”) and

* virtual volume (see Section 4.3.3, “Vi r t ual Vol une Concept”)

global image processing approaches like

< temporary global (see Section 4.4.1, “Temporary Global Concept”)

« global (see Section 4.4.2, “Global Image Processing Concept”)

e Bitlmage (see Section 4.4.3, “Bi t | mage Concept”)

« Menoryl mage (see Section 4.4.4, “Menor yl mage Concept”)

* mixed modules (see Section 4.5, “Miscellaneous Modules”)

and you will be able to select the appropriate ways to implement these processing algorithms in the ML.

89

Image Processing Concepts

4.1. Page Calculation in the ML

Page-based image processing is one of the key concepts in the ML, because filtering and analyzing
images easily fails when images do not fit into memory.

4.2. Page-Based Approaches
4.2.1. Page-Based Concept

Used if voxel coordinates are not necessary and voxel operations are local. (LUT, windowing, some
color model changes, thresholding, inversion, arithmetics on voxel data, etc.).

Figure 4.1. Page-Based Concept

Output image

Algorithm

Input image

Advantages:
» Fast image data access by pointer incrementation

» Short implementation

90

Image Processing Concepts

Disadvantages:

» Voxel coordinates are not directly available

» Neighbour voxels are only available with precautions
* Not very useful for complicated algorithms

» Precautions necessary because pages could reach outside the image, i.e., voxels outside the image
might be processed.

Example 4.1. Implementing a Page-Based Algorithm

tenpl at e <typenane DATATYPE>

voi d AddExanpl e: : cal cul at eQut put Subl mage(TSubl nage<DATATYPE> * out Subl ng,
int /*out | ndex*/,
TSubl mage<DATATYPE> *i nSubl ngl,
TSubl mage<DATATYPE> *i nSubl ng2)

/] Get pointers to menory buffers of input and output subi nage.
DATATYPE* out Subl ngVP_beg = out Subl ng- >get | magePoi nt er (out Subl ng- >get Box().v1l);
DATATYPE* out Subl ngVP_end = out Subl ng- >get | magePoi nt er (out Subl ng- >get Box().Vv2);
DATATYPE* i nSubl ngl1VP = i nSubl ngl- >get | magePoi nt er (i nSubl ngl- >get Box().v1);
DATATYPE* i nSubl ng2VP = i nSubl ng2- >get | magePoi nt er (i nSubl ng2- >get Box() . v1);
/1 Loop over all voxels in menory buffers even if pages reache outside the inage.
for (DATATYPE* out Subl ngVP = out Subl ngVP_beg;

out Subl ngVP <= out Subl ngVP_end;

out Subl ngVP++, i nSubl ng1VP++, inSubl ng2VP++)

(*out Subl mgVP) = (*i nSubl ng1lVP) + (*i nSubl ng2VP);
}
}

4.2.2. Voxel-Based Concept

Useful for all pixel-based algorithms already mentioned in Section 4.2.1, “Page-Based Concept” (LUT,
windowing, some color model changes, thresholding, inversion, arithmetics) or if voxel coordinates
are essential and operations are local (rasterization of implicit Objects, Subl mage, etc.), e.g.
m AddExanpl eQOp.

91

Image Processing Concepts

Figure 4.2. Voxel-Based Concept

Output image

Algorithm

Input image

Advantages:

» Fast access by 6 nested loops and pointer incrementation in inner loop
» Voxel coordinates are available

» Conceptually good implementation, recommended for page processing
Disadvantages:

* Neighbor voxels only available with precautions

* Not very useful for advanced algorithms

92

Image Processing Concepts

Example 4.2. Implementing a Voxel-Based Algorithm

tenpl at e <t ypenane DATATYPE>
voi d PosExanpl e: : cal cul at eQut put Subl mage(TSubl nage<DATATYPE> *out Subl ng, int out | ndex,
TSubl mage<DATATYPE> *i nSubl ng)

/] Get extent of output inmage and clanp the extent of the box of out Sublng
/'l agai nst
// it to be sure that no voxels outside the i mage are processed.

Subl mageBox box = out Subl ng- >get Val i dRegi on() ;

Il lterate over all valid voxels of inSublng and out Subl ng.
| mgeVector p = box.vi;
for (p.u = box.vl.u; p.u <= box.v2.u; ++p.u) {
for (p.t = box.vl.t; p.t <= box.v2.t; ++p.t) {
for (p.c = box.vl.c; p.c <= box.v2.c; ++p.c) {
for (p.z = box.vl.z; p.z <= box.v2.z; ++p.z) {
for (p.y = box.vl.y; p.y <= box.v2.y; ++p.y) {

/] Get/Set position of row starts as pointers to nenory
/] positions in inSublng and out Subl ng buffers.

p. x = box.vl. x;
DATATYPE* i P = inSublng ->get| nagePoi nter(p);
DATATYPE* oP = out Subl ng- >get | nagePoi nter (p);

/1 Process all voxels in row with pointers. Be sure to
/1 include | ast voxel in row with "<= box.v2.x", because
/1 v2 is still part of box region.

for (; p.x <= box.v2.x; ++p.X)

{
*oP = cal cFrom p(p.x, *iP); // Calculate voxel from position & input
++i P; ++0P; /1 Move input and output pointer forward

See Section 3.1.9, “Implementing calculateOutputSublmage()”, Section 7.2.3, "Examples with
Registered Voxel Types” and programming examples released with MeVisLab for further examples.

4.2.3. Slice-Based Concept

Useful for arbitrary 2D algorithms. The page extent is set to slice extent, or for calculations of an output
page, the entire input slice is requested in cal cul at el nput Subl nageBox() .

93

Image Processing Concepts

Figure 4.3. Slice-Based Concept

Output image

Algorithm

Input image

Advantages:

» Very fast random access (with getValue/setValue or like page-based or voxel-based concept)
» Easy to implement

» Paging still works fine if x and y extents are not too large

Disadvantages:

» PageExt == SliceExt: can easily degenerate and become very expensive (e.g., on large mammograms
or satellite images), also page extent is propagated to appended images

 InputTile == SliceExt, output page is normal: many slice requests become necessary to compose the
output slice

Consider whether e.g., the Vi rtual Vol une or a kernel-based concept could replace this concept to
avoid these disadvantages.

94

Image Processing Concepts

Example 4.3. Implementing a Slice-Based Algorithm

void SliceFilter::cal cul ateQutputl mageProperties(int /*outlndex*/, Pagedl mage* outlnage)
{

// Set extent of pages in z, c, t and u dinension to 1.

/1 Thus only axial slices will be calculated by the nodul e.

/1 Avoid too small pages.

| mageVect or pExt = getlnputl nmage(0)->get PageExtent();
if (pExt.x < 64){ pExt.x = 64; }
if (pExt.y < 64){ pExt.y = 64; }
out | mage- >set PageExt ent (| mageVect or (pExt. x, pExt.y, 1,1,1,1));
}
Subl nageBox SliceFilter::cal cul at el nput Subl mageBox (i nt /*inl ndex*/,
const Subl mageBox& out Subl ngBox,
int /*outlndex*/)

/1 Request slice with image x/y extent. Al other
/| parameters are given by the page extent.

Subl mageBox i nBox = out Subl ngBox;

i nBox.vl.x = 0;
inBox.vl.y = 0;
i nBox. v2.x = getlnputlmage(0)->get| mageExtent (). x-1;
i nBox.v2.y = getlnputlmage(0)->getl| mageExtent().y-1;

return inBox;

4.2.4. Kernel-Based Concept

An important class of image filters is based on the so-called kernel-based image filtering. This class is
used when a fixed region around a voxel is needed to calculate output voxel (edge detector operations,
morphological operations, noise filters, smoothing, texture filters, etc.).

Advantages:

» Fast access to kernel range in 6D is possible with paging so it fits well into page concept
» Many algorithm categories can be implemented

Disadvantages:

» Base class is a bit more complex

» Image borders require consideration (supported by base classes, though)

See Kernel Progamming for more information.

4.3. Concepts for Partially Global Image
Processing

4.3.1. Random Access Concept (Tile Requesting)

There are different ways to implement algorithms that need random image access.

One way is to use the "explicit image data request” concept to request arbitrary tiles from the input
image and to manage them as data chunks This is often useful when explicit data needs to be passed
to function calls or direct pointer access is needed. See Section 3.1.12, “Explicit Image Data Requests
from Module Inputs” for more information.

Another way is to use the "virtual volume" concept. This concept is especially useful for accessing very
large images where no direct pointer or memory access and set /get Val ue methods are sufficient. See

95

Image Processing Concepts

Section 4.3.3, “Vi r t ual Vol ume_Concept” for more information and Section 2.3.7, “ Vi rt ual Vol une ”
for examples.

Figure 4.4. Random Access Concept

Output image or page

Algorithm

getTile() getTie() \getTiIe()
\

/

Input image

4.3.2. Sequential Image Processing Concept

There are different approaches to processing one or more input images sequentially. In order to process
very large images that may not fit into memory, it is crucial to perform the processes step by step. Some
algorithms can simply do this page-wise, and other algorithms need random access.

The most common approach is to use the processAl | Pages command available as a function in the
class Modul e to force the processing of all pages via cal cul at eCut put Subl mage() calls. This concept
is discussed in detail in Section 3.1.17, “Processing Input Images Sequentially” and is very similar to
the implementation of a normal page-based module. The example calculates a masked average of all
image voxels in a page-based manner.

The "virtual volume" concept is another concept often used. This concept provides random access to
the managed image. Then it is easy to implement a normal loop to traverse all voxels or to use the
moveCur sor XW apAr ound() function on a typed virtual volume to move a cursor over each voxel of the
image, comparable to an iterator. See Section 4.3.3, “Vi r t ual Vol une_Concept” for more information
and Section 2.3.7, “ Vi r t ual Vol une_” for examples.

96

Image Processing Concepts

4.3.3. Vi rt ual Vol une Concept

The Vi rt ual Vol une and the TVi r t ual Vol une classes manage an efficient voxel access to the output
image of an input module or to a 'standalone’ image. See Section 2.3.7, “ Vi r t ual Vol une ” for example
code.

So it is possible to implement random access to a paged input image or to a pure virtual image without
mapping more than a limited number of bytes. Pages of the input volume are mapped temporarily into
memory when needed. If no input volume is specified, the pages are created and filled with a fill value.
When the permitted memory size is exceeded, older mapped pages are removed. When pages are
written, they are mapped until the virtual volume instance is removed or until they are explicitly cleared by
the application. Virtual volumes can easily be accessed by using set Voxel and get Val ue. These kind
of accesses are well-optimized code that might need between 9 (1D), 18 (3D) and 36 (6D) instructions
per voxel if the page at the position is already mapped.

A cursor manager for moving the cursor with noveCursor* (forward) and rever seMoveCursor*
(backward) is also available. About 5-9 instructions might be executed for these move methods.
set Cur sor Val ue and get Cur sor Val ue provide voxel access. Good compilers and already mapped
images might require about 5-7 instructions. So the cursor approach will probably be faster for data
volumes with more than two dimensions.

All the virtual volume access calls can be executed with or without error handling (see last and default
parameter of constructors). If ar eExcepti onsOn is true, every access to the virtual volume is tested
and if necessary, exceptions are thrown which can be caught by the code calling the virtual volume
methods. Otherwise, most functions do not perform error handling.

. Note
Exception handling versions are slower than versions with disabled exceptions. However,
this is the only way to handle accesses safely.

Tip

This class is the recommended alternative for global image processing algorithms to using
an actual global image (Menor yl nage).

4.4. Global Image Processing Concepts
4.4.1. Temporary Global Concept

This concept has been designed for algorithms that require a single, very efficient random image access
to calculate a result.

Important

If possible, try to avoid this approach!

It supports only limited image sizes which depend on the available memory!
Procedure:

* Read entire input image (e.g., when first voxel or page is requested or when the user starts the
algorithm by pressing some button)

» Analyze the image and save all results

» Free allocated image buffer

97

Image Processing Concepts

» For page requests, the results are used to fill those pages
Advantages:
» Global algorithms are easy to implement, because all image data is directly available.

» Uses the memory only temporarily, i.e the memory is available again when the process has been
finished.

Disadvantages:

» Results must be saved/buffered in data structures and must be reconverted into requested pages.
Hence, additional structures are required.

* The image might not fit into memory.
» Even if only one voxel or a small page is requested, the entire volume must be processed.

» Danger of heap fragmentation.

4.4.2. Global Image Processing Concept

This concept is needed for time-critical random image access to calculate a result.

Important

If possible, try to avoid this approach!

It supports only limited image sizes which depend on the available memory!
Procedure:

* Read entire input image (e.g., when first voxel or page is requested or when the user starts the
algorithm by pressing some button)

* Analyze the image and save all results

* Free allocated image buffer

» For page requests, the results are used to fill those pages.
Advantages:

» Easy and fast implementation.

Disadvantages:

» Degenerates the page-based, cached calculation process.
 Fails on images which do not fit into memory.

* Must map the entire image and blocks large memory areas for a long time. It cannot/should not be
used in larger networks or applications because the "Out of Memory" state is easily reached.

» Danger of heap fragmentation.

» Usually the image must be passed page-based to the output which also requires additional
implementation of page-based access to image.

Examples:

» See Section 4.2.3, “Slice-Based Concept”: The requested page has the size of the entire image.

98

Image Processing Concepts

» See Section 4.3.1, “Random Access Concept (Tile Requesting)”: The entire image is requested as
a tile.

4.4.3. Bi t | mage Concept

In the page-based image processing concept of the ML, Boolean data types are not available (nor are
they planned).

The Bi t | mage class can be used as an alternative option.

Advantages:

» Easy-to-use and compact image

» quite compact image although it is a global image

* relatively fast.

Disadvantages:

* Not paged, i.e., global; this, however, is not really problematic because only bits are stored

See Section 2.3.6, “ Bi t | nage ” for a detailed overview.

4.4.4. Menoryl mage Concept

Algorithms that need access to a whole non-paged memory-mapped image might use the Menor yl mage
approach for image processing (see Section 2.3.8, “ Menor yl mage_"). Note that this breaks the page-
based approach - nevertheless it is supported by the ML. It is integrated as a special member of
the Pagedl mage in such a way that it can be handled in parallel or instead of a paged image (see
Section 2.3.4, “ Paged| mage ").

4.5. Miscellaneous Modules

A set of miscellaneous module types can be considered, e.g.
* visualization modules showing an ML image in a viewer
« visualization modules creating ML images from their views

« converter from ML images to other information structures, such as object lists, histograms, model
information or segmentations

The following examples give a basic idea of the different module types:
* ML Image -> Visualization

Examples of such visualization modules are simple viewers which take the image data or the
information derived from the image and show them on a display. This could include slice viewing (2D),
volume or surface rendering (3D) or animated images in 2D/3D.

MeVisLab also offers a set of specialized Open Inventor™ modules to accomplish these tasks. The
modules get access to an ML image via an SoSFM.I mage field. This gives access to the image data
viagetTile().

Examples in MeVisLab are SoVi ew2D, d obal St at , SOGVRVol uneRender er .

* Visualization -> ML image

99

Image Processing Concepts

A typical example is a snapshot module creating ML images from (sequences of) image
areas. Examples in MeVisLab are all viewers like SoExami nerViewer and the module
Voxel i zel nvent or Scene.

100

Chapter 5. Debugging and Error
Handling

Chapter Objectives

The ML offers some special support for debugging, error handling, logging and exception handling:

e Section 5.1, “Printing Debug Information”

e Section 5.2, “Handling Errors”

Section 5.3, “Registering Error Handlers”

Section 5.4, “The Class Er r or Qut put _and Configuring Message Outputs”

Section 5.5, “Tracing, Exception Handling and Checked Object Construction/Destruction”

101

Debugging and Error Handling

5.1. Printing Debug Information

Debug printing is controllable in and by the ML and there is some material for selective debug printing.
The required files are automatically included when the standard ML include file nml Modul el ncl udes. h
. Is used.

Controlling and Managing Debug Messages

The ML controls and manages debug (and other) messages by using the instance M_Er r or Qut put Of
the class Er r or Qut put (see Section 5.4, “The Class Er r or Qut put_and Configuring Message Outputs”).
It controls the debug outputs and the error handling system. However, this instance or class should
not be used directly. It is recommended to use the Cor eCont r ol module which makes the important
settings available (if it is possible by an e.g., application like MeVisLab. There, the debug printing can
be enabled/disabled for the entire ML, and debugging can be enabled/disabled for certain classes by
using environment variables or debug symbols.

Printing Debug Messages in the Source Code

In the source code e.g., of your project, usually one of the following macros generates the debug prints:
1. m Debug(STREAMOUTS) (see miDebug below - number 1)

2. m DebugPri nt (STREAMOUTS) (see mIDebugPrint below - number 3)

3. nl Debugd ass(CLASS NAME, STREAMOUTS) (see miDebugClass below - number 4)

4. m DebugConst (ENV_VAR, STREAMOUTS) (see miDebugConst below - number: 2)

5. ni DebugCondi ti onal (COND_SYM STREAMOUTS) (see miDebugConditional below - number: 5)

Important

Each debug output is normally related to a debug symbol which must be enabled in the ML
before the debug information can be printed.

Such a debug symbol can be defined as
1. an environment variable before the ML or the application is started,

2. as adebug symbol in the Cor eCont r ol module when used in an application such as
MeVisLab,

3. or directly via programming in the global M_Er r or Qut put (see also Section 5.4, “The
Class Error Qut put_and Configuring Message Outputs”) instance of the ML

The third option should not be used in normal code, but only in modules dedicated to debug
control or diagnostics.

Important

To improve performance and reduce the amount of code, all debug macros are not compiled
in release mode.

If debugging is enabled and the related debug symbol (or environment variable) for the macro is defined,
any of the debug macros described below will send

102

Debugging and Error Handling

the file name,

* the time stamp,

* the line number,

 the debug symbol,

« and the passed parameter STREAMOUTS

to the global instance MLEr r or Qut put of the ML. This instance will send the above information to all
registered instances (modules such as Consol e, M_LogFi | e and MeVisLab application consoles.

The ML provides the following macros for printing debug information:
1. il Debug(STREAMDUTS)

This macro prints the information given by STREAMOUTS. It requires the runtime type system to be
implemented in the class. Thus, the macro accesses the type id and creates the debug symbol by
using 'ML_' + the class name. This macro is normally used in implementations of the ML modules.

If you use

Example 5.1. nil Debug

m Debug("This is the this pointer of this:" << this << ".");

in a method or function of your AddExanpl e module, the information is printed (provided that the
environment variable M._AddExanpl e is not O or another debug symbol M__AddExanpl e is defined).

2. nl DebugConst (ENV_VAR STREAMOUTS)

This macro is used for printing any type of debug information the developer considers to be
interesting. The macro scans for the corresponding environment variable ENV_VAR or for a debug
symbol of the same name registered in the MLEr r or Qut put instance.

This registering of a debug symbol can also be done in the Cor eControl module by defining
the debug symbol in the "Debug" panel which is the normal way when e.g., using the ML in the
application MeVisLab.

Example 5.2. nl DebugConst

m DebugConst ("M._HOST", "Test" << 1 << "Help!");

prints "Test1Help!" if the environment variable M__HOST is defined as ! =0 or if a debug symbol of
the same name is defined.

3. m DebugPri nt (STREAMOUTS)

This macro is especially designed for ML classes which are not registered in the runtime type
system of the ML. It does the same as m DebugConst (M._DEBUG_ENV_NAME, STREAMOUTS) where
M._DEBUG_ENV_NAME must be defined by the programmer before nl DebugPri nt is called.

M._DEBUG ENV_NAME is usually defined once before e.g., a class is implemented. Then
m DebugPri nt (STREAMOUTS) can be used as long as M._DEBUG ENV_NAME is undefined. Hence,
the programmer does not have to care much about the environment variable for debug outputs and
can change it easily without touching any debug print statement.

103

Debugging and Error Handling

Example 5.3. nl DebugPri nt

/1 ... previous code

/1 Define before class "AddHel per":
#def i ne M._DEBUG_ENV_NAME "M._AddHel per"

cl ass AddHel per {
public:
voi d testFunction() {
m DebugPrint ("This is printed if debug symbol M._AddHel per is defined.");
}
b

/1 At end of inplenentation of AddHel per
#undef M._DEBUG ENV_NAME

/1 next class...

To avoid side effects, do not forget to undefine the environment variable at the end of the file.

m DebugCl ass(CLASS _NAME, STREAMOUTS)

This macro is used to print debug information for a certain class given by CLASS_NAME. It requires
the runtime type system to be implemented in the class CLASS_NAME . Thus the macro accesses

the type id and creates the debug symbol from the class name. Hence, symbol-controlled debug
outputs for different classes can be mixed.

Example 5.4. m Debugd ass

/1. ..
m DebugCl ass(AddExanpl e, "Debug information for the AddExanple class.");
m DebugCl ass(Anot her Exanpl e, "Debug information for the Another Exanple class.");

1. ..
m DebugCondi t i onal (COND_SYM STREAMOUTS)

This macro is used to specify subsets of debug outputs for a debug symbol given by the runtime
type of the class. Debug information is printed if

« the class name (given by the runtime type) is specified as symbol, or
« if the class name + "-" + COND_SYMis specified.
If, for instance, the following macro is used in the class MyModul e:

Example 5.5. m DebugCondi ti onal

m DebugCondi ti onal (" CASES', "Messagel");

the debug information "Messagel" is printed if the debug symbol "ML_MYMODULE" is defined or
if the debug symbol "ML_MYMODULE-CASES" is specified. If just "ML_MYMODULE-CASES" is
specified, only "Messagel" is printed.

This macro requires the runtime type system to be implemented in the class that uses the macro.
It accesses the type id and creates the debug environment name.

» COND_SYMspecifies the additional symbol added to the class symbol (separated by "-").

» STREAMOUTS is the stream output sent to the error/debug output if the symbol given by the class
name + "-" + COND_SYMis activated.

104

Debugging and Error Handling

Important

DO NOT implement required functionality in the macro call, because it will not be compiled
in release mode.
The code

int a=0;

nm Debug(" Buggy exanple, do not use: " << (a=10) << "\n");

int b= a*10;

will resultin b == 0 in release mode and in b == 100 in debug mode.

‘ Note
To make debug outputs more readable, long file names are truncated to 30 characters.

5.2. Handling Errors

The ML provides some functionality for handling errors on different levels. Generally, programmers
should not try to handle errors themselves. It is strongly recommended to call the correct handler and
leave error handling to the ML.

It is possible to configure the ML so that the application handles errors in different ways: the application
could, for instance, generate an e-mail message, or it could terminate, or it could pop up a window and
try to continue. The way how applications handle errors should be configured globally for the ML and
not for the individual modules.

So, how to handle an error or a warning? There are three macros to be called on warnings, errors or
fatal errors:

1.

m War ni ng(functi onNane, errorCode)

This macro is used to print warning messages which notify the user or application of any type of
(non-urgent) errors or abnormalities. See number 3 for parameter descriptions.

m Error (functionName, errorCode)

This macro is used to print errors messages which notify the user or the application of errors that
cause incorrect program calculations but that do not lead to program termination, i.e., the system
tries to continue processing. However, these errors may lead to fatal errors later. See number 3
for parameter descriptions.

Important

Do not terminate the program! Leave this decision to the error handling routines of
the ML!

m Fat al Error (functi onNane, error Code)

This macro is used to print error messages which notify the user or the application of fatal errors
that make it impossible to continue without getting into an invalid program state.

Important

Do not terminate the program! Leave this decision to the error handling routines of
the ML!

The functionNane string identifies the calling function, including the class name such as
"Host::getTil e()". TheerrorCodeisanM.Err or Code or a string that describes the problem such

105

Debugging and Error Handling

as M._BAD DATA TYPE, M._NO MEMORY or M._PROGRAMM NG_ERROCR. Finally the most important thing
is that each of the macros returns a stream object which can be used to provide futher information
on the problem. This has the advantage that a complex information string can be streamed into the
macro instead of having to create a string by manually.

‘ Note
You are not responsible for the program to continue safely after a fatal error, just
explain what you do even if it will lead to a crash.

This is necessary since fatal error management depends on the configuration of the ML
error handler. The error handler might try to continue the code normally, or to terminate
the program, or to jump into a debugger, to send a mail, to throw an exception or
something else. If you terminate the process, the ML will not be able to handle it.

4. I nfo(functionNane)

This macro is used to print any type of non-debugging information to the error handler of the ML.
The macro is typically used for important log information that are not warnings or error messages
but that are important for application analysis, e.g., after a crash. It returns a stream object which
is used to construct the information string.

Important

To avoid the application and MeVisLab log files being filled with useless information
during normal operation, do not use this macro for debugging purposes. Use the
appropriate ml Debug macros instead.

Below you can see some examples that illustrate how to make use of the macros. You can stream any
object that supports to be streamed to a std::stream into the result message.

m War ni ng(" SomeQbj ect : : soneFunction", M._BAD PARAMETER) \
<< "The passed paraneter " << sonelndex << " is out of range.";

m Error (" SomeCbj ect: : someFunction”, M._NO MEMORY) \
<< "Could not allocate inmage of size " << soneExtent << "."

m | nf o(" SomeQbj ect : : someFunction") << "Finished registration, result matrix is " << soneMatri x;

5.3. Registering Error Handlers

The ML provides the class Error Qut put and the class Error Qut put | nf os for error handling and
redirecting ML outputs. It contains a set of methods to print debug information, warnings, errors and
fatal errors. There is a registration mechanism where the application can register itself to be notified
when an error, a warning or debug information is to be printed or handled.

When you have registered your own error handling function with Er r or Qut put : : addEr r or Qut put CB() ,
the class ErrorQutput calls this function of type ErrorQutput:: ErrorQutput CB to notify the
application. It passes the registered user Dat a pointer, a completely composed information string and
a structure of type Err or Qut put | nf os to the function.

A structure of type Er r or Qut put | nf os contains

 atype identifier (warning, error, fatal error or debug),

 a prefix string with arbitrary information printed before a function,
 the function name,

 the error code,

106

Debugging and Error Handling

« the reason/info string,

* the string with information about the handling of the error,

* the file name,

* the line number and

« the time stamp when the message was received by the error handler.

See nmiErrorQutputinfos.h .and mErrorQutput.h in project MUtilities for parameter
descriptions.

5.4. The Class Error Qut put and Configuring
Message Outputs

The class Error Qut put is the central error handle and redirection class for the ML. It contains a set
of methods to print debug and tracing information, warnings, errors and fatal errors, and to configure a
lot of error and message output settings, to specify special behavior (e.g., aborting) on some message
types and much more. It also offers a registration mechanism where the application can register itself to
be notified when an error, tracing, warning or debug information is to be printed or handled. They permit
to register functions to notify the application, to control a set of debug environment variables, etc.

The ML provides a global instance M_Er r or Qut put of this class which is normally used by debug and

error handling macros as well as by the ML API (see Section 6.3, “mIAPI.h"). You do not have to create
an instance on your own.

Note
&
Usually, you should not use this class directly.

Since this class is subject to change, use debug or error handling macros instead.

If you need to configure the error handling system e.g., for your application, use the
Cor eControl module (if available in your application) or functionality of ML API (see
Section 6.3, “mIAPLh").

See the header file documentation of m ErrorQutput.h and m ErrorQut put | nfos. h for detailed
information on how to use the following methods.

The class Err or Qut put offers methods to

» specify what the ML shall do on debug messages, (fatal) errors, etc.
1. void setTerm nati onType(M.MessageType | evel, MTermni nator tern;
2. M.Terninator getTerm nationType(M-MessageType | evel) const;

» specify a filter to suppress any type of undesired messages (e.g., debug infos, std::cout, std::cerr or
other messages)

1. void setMessageFilter(unsigned i nt nessageType);
2. unsigned int getMessageFilter();

« install a dump callback function that is called when any error occurs on a runtime type. It permits
dumping a runtime typed object as a string into the error message:

1. void set DunpCB(DunpCB *dunpCB);

107

Debugging and Error Handling

2. DunpCB *get DunpCB() const;
» enable/disable debug message handling:
1. void setFul | Debuggi ngOn(bool on);
2. bool isFull Debuggi ngOn() const;
* manage registered callback functions that will be called when messages are sent to this class:
1. void addErrorQutput CB(void *userData, ErrorQutputCB *call back);
2. void renoveErrorQut put CB(voi d *userData, ErrorQutputCB *call back);
3 bool hasError Qut put CB(void *userData, ErrorQutputCB *call back) const;
4. void renoveAl | Error Qut put CBs();
5 unsi gned | ong get NunmCut put CBs() const;

* manage a set of debug symbols (also see Section 5.1, “Printing Debug Information”):

1. void addDebugEnvNanme(const std::string &nvNane);
2. void renpveDebugEnvNane(const std::string &nvNane);
3 bool hasDebugEnvNanme(const std::string &nvNane) const;
4. const std::vector<std::string> &et DebugEnvNanes() const;
5. void renoveAl | DebugEnvNanes();
6 unsi gned | ong get NumDebugEnvNames() const;
» suppress std::cout and std::cerr prints to the standard console outputs:
1. bool areMessagesSent ToCout () const;
2. void sendMessagesToCout (bool on);
3. Dbool areMessagesSent ToCerr () const;
4. void sendMessagesToCerr (bool on);

» send messages to an instance of this class that are used by debug and error handling macros (see
also Section 5.2, “Handling Errors” and Section 5.1, “Printing Debug Information”):

1. void printAndNotify(...) const;
2. void handl eDebugPrint(...) const;
 configures and returns which message types shall be dumped:
1. size_t getTraceDunpMessageBits() const;
2. void setTraceDunpMessageBits(M.ui nt 32 bit Mask);

» configure the length of the list of recently called functions and when to dump the current call stack
into the registered error handling callbacks (see also TracingAndExceptionHandling):

1. size_t get MaxNunir aceLi st Dunps() const;

2. void set MaxNumTr aceLi st Dunps(M.A obal Tr aceBuf f er Type nun);

108

Debugging and Error Handling

3.

4.

size_t get MaxNunmlraceSt ackDunps() const;

voi d set MaxNunilr aceSt ackDunps(M_d obal Tr aceBuf f er Type num;

5.5. Tracing, Exception Handling and
Checked Object Construction/Destruction

The ML is a library of base classes that many modules and applications use to implement image
processing algorithms. In such a complex system, mechanisms to catch, log and handle runtime errors
and crashes as well as mechanisms to trace program execution are required. Especially for critical
or potentially unsafe functionality, support for additional checks and controls must be provided. The
following paragraph describes some macros that allow for the implementation of highly safe source code
with crash and error logging especially for critical functionality:

Tracing Program Execution:

1.

M._TRACE | N(" <Functi onDescri pti on>")

This macro should be implemented as the first line in all functions and methods that are not very
time-critical. When this code is compiled in release mode, it implements functionality that pushes
a reference to the string <Functi onDescri pti on> on a stack and into a list, and when the function
is finished the pushed information is popped from the stack. This push/popl/list functionality is
implemented in the classes Tr ace and Tr aceBuf f er in project MUt i | i ti es. The ML error handler
(see Section 5.4, “The Class Er r or Qut put _and Configuring Message Outputs”) can be configured
to append the list of recently called functions (trace list dumps) and the current call stack (trace
stack dumps) to the registered error output callbacks for additional bug analysis.

Note that this macro only uses about 8 simple CPU instructions in release code and thus can be
added to most functions without significant performance loss.

M._TRACE_| N_TI ME_CRI Tl CAL(" <Functi onDescri pti on>")

This macro is identical with the macro M._TRACE_I N("") , however, it is only compiled if explicitly
enabled for diagnostic purposes. In normal debug or release mode, this tracing macro is not
compiled. It is especially useful for tracing time-critical functionality which is assumed to operate
safely in normal mode.

Handling Exceptions:

1.

4,

M__TRY {

This macro opens a source code region to be checked for undesired exceptions. If such an
exception occurs, the closing M._CATCH* () macro implements crash handling and error logging
with the ML error manager and memory cleanup.

} M_._CATCH()

This macro can be used to close an M._TRY { code fragment. The macro sends a fatal error
to the ML error manager with M__PRI NT_FATAL_ERROR() and continues with the execution of the
memory manager which is returned by that macro. It is typically used when no resources that were
opened or allocated in the enclosed code need to be cleaned up.

} M._CATCH RETURN_NULL()

This is another macro that can be used to close an M._TRY { code fragment. It is identical with
} M._CATCH(), but it returns O.

M._CATCH BLOCK(<exception type>){ <handling code> }

109

Debugging and Error Handling

This is another macro that can be used to close an M._TRY { code fragment and that allows
for cleaning up resources opened or allocated in the enclosed code. Multiple implementations of
M._CATCH BLOCK() can be implemented one after another to handle different types of exceptions.

Note that M._CATCH BLOCK() does not post errors to the ML error manager; this must be done
explicitly in the <handl i ng code> section if necessary.

Important

The macros listed above implement exception catching and error posting only if the
code is compiled in release mode.

In debug mode, the macros result in dummy code which does not perform exception
handling or catching, i.e., errors and exceptions will cause normal program crashes. This
strategy has been chosen to simplify debugging in debug mode, because detecting precise
error positions becomes more difficult in many debugging tools when exception handling
is enabled.

The following code fragments demonstrate tracing and exception handling:

Example 5.6. Example of a Typical Use of the ML_TRACE_IN() Without Exception
Catching

void Myd ass: : test Functionl()

M__TRACE_| N("void MyCl ass: :testFunctionl()");
<functi on body>

}

Example 5.7. Example of a Typical Use of the ML_TRACE_IN() with Exception
Catching

void Myd ass: : test Functi on2()

M__TRACE_ | N("voi d MyC ass: :testFunction2()");
M__TRY

<The function body is inplenmented here. If an exception

is thrown in it then M_CATCH posts a fatal error to

the ML error nanager, and - if the error nanager does

not termnate the process - continues execution normally>

M__CATCH; /1 This catches the error, posts it and conti nues
// if the ML error nmanager continues execution

}

Example 5.8. Example of a Typical Use of the ML_CATCH_RETURN_NULL()

int MyC ass::testFunction3()

{
M__TRACE I N("int MyCl ass::testFunction3()");
M._TRY

<The function code is inplenented here. If an exception

is thrown in it then M._CATCH RETURN NULL posts a fatal error to
the M. error manager, and - if the error nanager does

not termnminate the process - continues execution with a

returni ng 0>

return result; // This is the return statenent in case of successful execution.

}
M._CATCH RETURN_NULL; /! This catches the error, posts it and returns
/1 0 if the ML error nmanager continues execution

‘ Note
The semicolons behind the M__TRACE | N() macros can be omitted but are useful for an
automatic code indention by the development environment.

110

Debugging and Error Handling

Constructing and Deleting Objects:

1.

M._CHECK_NEW ptr, expression)

This implements a new of the passed expr essi on. In release mode, it handles the exception with
an M__PRI NT_FATAL_ERROR post to the ML error manager. The pointer must have been set to NULL
before.

M._CHECK _NEW TH(ptr, expression)

This executes a new of the passed expr essi on. In release mode, it handles the exception with
a ML_PRI NT_FATAL_ERROR post to the ML error manager and it throws either an M._NO_MEMORY
exception or an M._CONSTRUCTOR_EXCEPTI ON dependent on whether the new statement returned
NULL or the constructor threw an exception. The pointer must have been set to NULL before.

M__DELETE(ptr)

This macro is used to delete an object allocated with M._CHECK_NEW ptr, expression) or with
M._CHECK_NEW TH(ptr, expression). It mustonly be used with a single created object, not with
an array (see below).

M__DELETE_ARRAY(ptr)

This macro is used to delete an object allocated with M._CHECK NEWptr,
expr essi on[<obj ect Nun®]) or with M._CHECK_NEW TH() . It must only be used for allocated object
arrays.

Important

Always try to use the above macros for constructing and deleting objects inside of ML code.
In future, this will provide a more powerful and failsafe memory management, and it will
also correctly handle and log errors that occur in applications.

‘ Note
See Section 2.2.2, “ Menory ” for an alternative memory management concept with ML

allocation and freeing statements.

Validating Program States:

1.

M__ CHECK(<expr essi on>)

This macro posts an M._PRI NT_FATAL_ERROR() to the ML error manager if the passed
<expr essi on> returns f al se. This is the typical way of checking entry conditions in functions, for
example.

If the ML error manager continues execution, normal program execution continues after the
M._PRI NT_FATAL_ERROR() macro.

M._CHECK_ONLY_I N_DEBUQ <expr essi on>)

This macro is identical with the M._CHECK(<expr essi on>) macro, however, it is only compiled
in debug mode. In release mode, it is not implemented at all. So this macro is comparable to
the normal assert () statement. With the assert () statement, however, errors are redirected to
abort () and not to the ML error manager.

M._CHECK_THROW <expr essi on>)

This macro posts an M._PRI NT_FATAL_ERROR() to the ML error manager if the passed
<expressi on> returns f al se. This is the typical way of checking program or parameter states in
functions for validity.

111

Debugging and Error Handling

If the ML error manager continues execution, this macro throws an M._BAD PO NTER COR 0
exception after the M._PRI NT_FATAL_ERROR() macro. Thus this macro is especially useful in code
segments which are enclosed in ML_TRY { <function body> } M._CATCH+*() segments.

Note

Also see Section 5.2, "Handling Errors” for explicit usage of error and warning posts.

Example 5.9. Detailed Example for a Checked Object Allocation with
ML_CHECK_NEW_THROW() and Release of Resources on Crashes

doubl e Myd ass: : testFunction4()

{
int *newArray = NULL;
doubl e retVval = 0;
M__TRY
{

/!l Allocate an integer array with new
M__CHECK_NEW THRON newAr ray, int[200]);

int result = 0;

/*

We assune that the function code nakes use of the
all ocated data here and that it nust calculate a
non zero return value; if result remmins 0 then
we have a bug somwnhere...

*/

/1 This value is expected to be non zero, otherw se
// we have a fatal error, check it chere.
M._CHECK_THROWresul t);

/1 Calculate the return val ue.
retVal = 10. / result;

/] Rel ease the allocated nenory and reset pointer.
M__DELETE ARRAY(newArr ay) ;

}
M__CATCH BLOCK(. . .){

// Cean up allocated resources after any crash in
/1 ML_TRY{ } block if pointer is non NULL.
M__DELETE ARRAY(newArr ay) ;

/! Post and log the error.
M__CHECK(0) ;

/1 Optionally and dependent on the way how t he application
/1 handl es errors the exception can be propagated to the caller
/1 such that it term nates execution until the main function is
/'l reached and the program state is cleaned up correctly.
/1 Anot her option would be to continue here.
throw();

}

return retVal;

}

112

Chapter 6. The C-API

Chapter Objectives

By reading this chapter, you will get information on how to use the ML and the ML modules with other
languages and without C++.

6.1. The C-API

The ML includes an interface that exports ML functionality as pure C. Many other programming
libraries can also use the ML functionality because most linkers can bind pure C objects from different
languages if they have a pure C interface. MeVisLab also uses the ML by simply including the
fles miInitSystenM..h , nmAPI.h and niDataTypes.h in pure C mode (see Section 6.2
“‘mlinitSystemML.h", Section 6.3, “mIAPI.h" and Section 6.4, “mIDataTypes.h"). The files the files
m I nitSystenM.. h and nl Dat at ypes. h, however, can be both; if setting the compiler switches
M._DI SABLE_CPP, only the C interface is available; otherwise C++ classes can also be used.

Most of the ML functionality can be accessed by including the three files described in Section 6.2
“mllnitSystemML.h", Section 6.3, “mIAPI.h"” and Section 6.4, “mIDataTypes.h".

6.2. mlInitSystemML.h

This file provides access to the most basic ML functionality which is system-dependent and defines
system-independent settings from it. This includes:

» Import and export symbols for Microsoft® platforms,

The 64 bit integer data type, some constants and types around it,

» Stream input and stream output for 64 bit integer (C++ mode only),

All system include files needed by any ML class and most ML modules (C++ mode only), and

ML initialization and destruction functions in the namespace ml (C++ mode only).

’ Note
This file is compiled in pure C style if the compiler switch M__DI SABLE_CPP is set; if not, it
also includes the C++ stuff.

Generally you do not have to care about this file, because the file is included in the correct
mode when ML classes are used.

6.3. mlAPI.h

This file provides access to the following ML functionality:

* Initialization and destruction of the ML, module library loading,

* Management of ML modules (creation, deletion, hierarchical/inheritance information of ML modules),
» Accessing parameter fields of ML modules,

* Module persistence: saving/restoring module states,

113

The C-API

Setting/getting values of (parameter) field values, names and types,
(Dis)connecting and notifying (parameter) fields,

Requesting, allocating and freeing image data from ML modules,
Managing (setting limits, clearing, querying) the ML memory cache,

Requesting image information from output fields of ML modules(extents, image transformations, voxel
sizes, DICOM tag list, etc.), and

Special access to BaseFi el d, Di conTagLi st Fi el d and SoNodeFi el d.

6.4. mliDataTypes.h

This file provides access to the following ML functionality:

Memory and tile (re)allocation, duplication and freeing,
ML type system initialization and destruction,

Querying data type properties: Checks for floating point, integer, standard, sign, size, minimum,
maximum, validity, etc. properties,

Merging types to new types: Promoted precision and types from two other types,

Information on registered types and their implemented functionality: Bit mask with flags for all
implemented operations,

Functions and macros for the registration of user-defined voxel data types,
Little/Big endian conversion functionality for data and registered voxel data types,
Registering a user defined voxel data type, and

A set of convenience functionality to compute with registered data types, to convert them from/to
strings, to allocate/manage/free voxel buffers.

6.5. mITypeDefs.h

This file contains most definitions, typedefs, structs enums, etc. used by the ML and by
M.Utilities. This file can be included without having to include or link anything from the
ML, M_.Utilities or M.LinearAl gebra (see Section 2.6.2, “ M Uilities ” and Section 2.6.1
“M_Li near Al gebr a(Vector2, ..., Vector10, Vectorl6, Matrix2, , ..., Matrix6, quaternion, ImageVector)”) .

This permits using ML types without having an actual library dependency.

Definition of macros, constants, enumerations for ML data types, colors (channels), error codes, etc.,
Callback types which can be registered in the ML,

Function (pointer) types for (arithmetic) operations of voxel data types,

Structure definition describing all type functions, properties and operations, and

Functions and macros for the registration of user defined voxel data types.

114

The C-API

6.6. C-Example using the C-API

The following section contains a small C example that creates an ML module network for loading, filtering
and saving an image. Note that the libraries for MLUti i ties, M_Li near Al gebra, M., MLI mageFi | e,
M.Geonet ry1, MLDi coniTr ee_ OFFI S and M.I magel Omust be available in binary search paths to run the
program correctly. They can normally be found in the installation directory of MeVisLab which is usually
available when working with the ML.

The example program implements the following operations:
» Checking the number of command line parameters and the validity of the ML version,

* Loading the libraries M.l mageFi | e, M_.Geonet ry1, and M.Di conir ee_OFFI S to have all required
modules linked to the executable,

» Creating an | ngLoad, Resanpl e3D, and | rageSave module,
 Setting input and output file names in | mageLoad and | mageSave module,
» Connecting | rageLoad, Resanpl e3D, and | mageSave module to a module pipeline, and

» Setting zoom parameter in Resanpl e3D, saving the result in a file by triggering |1 mageSave, and
checking the status field of | rageSave.

Example 6.1. Using the C-API

/Il Sinple ML programthat initializes the library, |oads the given
/] dataset, applies a resanpling and wites the result back to disk.

/1 The input file can be any fornat supported by the MFL (MeVis File Library) now called M.I nagel O
/1 including DICOM (.dcm), TIFF (.tif,.tiff)

/1 The output file is witten as a DI COM Tl FF conbi nation typically used by
/1 MeVisLab (DI COM header + tiff data).

#i ncl ude "nm API . h"

#i ncl ude <stdio. h>
#i ncl ude <i ostreanr

int main(int argc, char* argv[])
{
/1 run only if enough arguments
if (argc > 5) {

/'l Extra char buffer
char buffer[4096]="\n";

std::cout << "inmmgefilter: loading " << argv[1l] << std::endl;
std::cout << "immgefilter: output " << argv[2] << std::endl;

/1 Initialize the M.
M.l ni t (M._MAJOR_VERSI ON, M__MAJOR _CAPI _VERSI ON, M_._CAPI _REVI SI ON) ;

/1 Load additional inmage file and filter nodule libraries.

M._LoadLi brary("M.I mageFi | e");

M.LoadLi brary("M.Geonetryl");

I/l Also load a DICOM tree inplenmentation to be able to | oad DI COM i mages.
M.LoadLi brary("M.Di conilr ee_OFFI S") ;

/'l Create nodul es

/! Create an |ngLoad nodul e.

m Modul e* | oader = M.Cr eat eModul eFr omNanme(" | rgLoad") ;

/] Create resanpl e nodul e.

m Modul e* resanpl e = M.Cr eat eMbdul eFr onNane(" Resanpl e3D") ;
/Il Create an |ngSave nodul e.

115

The C-API

m Modul e* writer = M.Cr eat eModul eFr omNanme(" | ngSave") ;

/1 Setup file nanes

I/l Get the file nane field of the |oader.

m Fi el d* | oader Fi | enanmeFi el d = M_Modul eGet Fi el d(| oader, "fil enane");
/1 Set the file nane field to the given command |ine argunent

M.Fi el dSet Val ue(| oader Fi | enaneFi el d, argv[1]);

I/l Get the file nane field of the witer.

mField* witerFilenanmeField = M.Mdul eGetField(witer,"fil enane");
/1 Set the file nane field to the given command |ine argunent

M.Fi el dSet Val ue(wri terFi |l enameFi el d, argv[2]);

/1 Connect nodul es

/] Get the output image field of the |oader.

m Fi el d* | oader Qut put0 = M_Mbdul eGet Fi el d(| oader, "out put0");

/1 Get the input inmage field of the resanple nodul e.

m Fi el d* resanpl el nput 0 = M_.Modul eGet Fi el d(resanpl e, "i nput 0") ;

/1 Connect input of resanple to output of |oader.

/1 Al ways connect input to output (destination to source) and not vice versa.
M_Fi el dConnect Fr on(r esanpl el nput 0, | oader Qut put 0) ;

/] Get the output image field of the resanple nodul e.

m Fi el d* resanpl eQut put0 = M-Mdul eGet Fi el d(resanpl e, "out put 0");
/] Get the input inmage field of the witer nodule.

mField* witerlnputO = MMdul eGetField(witer,"input0");

/1 Connect input of resanple to output of |oader.

M.Fi el dConnect Fronm(wri t er | nput O, r esanpl eQut put 0) ;

/1 Set zoom factor

/Il Get zoomfactor field.
m Fi el d* zoonField = M.Mdul eGet Fi el d(resanpl e, "zoont');

/| Concatenate argunments to forma vector string.
sprintf(buffer,"% % %",argv[3],argv[4],argv[5]);

/] Set vector string value to zoom field.
M_Fi el dSet Val ue(zoonti el d, buffer);

/1 Wite i mage back to disk

/1 Get save field fromwiter.

m Fi el d* saveField = M_.Mbdul eGet Fi el d(writer, "save");

/1 Touch the save trigger, this actually saves the inage to disk.
std::cerr << "Starting inmage save..." << std::endl;

M_Fi el dTouch(saveFi el d) ;

std::cerr << "...finished." << std::endl;

// Check if witing was ok

m Fi el d* statusField = M_Mbdul eGet Fi el d(writer,"status");

/'l Get value of status field into given buffer (maxi numbuffer size is also passed).
M_Fi el dGet Val ue(st atusFi el d, buffer, 4096);

std::cout << "Wite status: << buffer << std::endl;

} else {

std::cout << "Usage: inmagefilter inputfile outputfile xscale yscale zscale" << std::endl;

}

return O;

}

This example called with the command line arguments

/ dempdat a/ Caroti dl_MRA. snal | .dcm Carotidl_MRA small.scaled.dcm 1 2 3

is comparable to the following module network and panels in MeVisLab:

116

The C-API

Imagesave

A

¥

ImagelLoad

117

Chapter 7. Registered Voxel Data
Types

Chapter Objectives

This chapter gives an introduction to programming, implementing and registering user-defined data
types for voxels:

Section 7.1,

“Overview of Registered Voxel Data Types”

Section 7.2,

“Implementing Image Processing on extended Voxel Data Types”

Section 7.3,

“Limitations of Registered Data Types”

Section 7.4,

“Traps and Pitfalls When Using Registered Voxel Types”

Section 7.5,

“Advanced Issues on Registered Voxel Types”

See Section 7.2.3, “Examples with Registered Voxel Types” for code examples.

118

Registered Voxel Data Types

7.1. Overview of Registered Voxel Data Types

ML modules normally implement algorithms on integer or floating point typed voxels, such as M.i nt 8,
M_ui nt 16 or M_f | oat . To support all these types, the image processing parts of ML modules algorithms
normally use templates. Modules can also support other, extended data types like Vector3 or Matrix3,
but it is not very efficient to use the template mechanism if a module is to support any extended voxel
type. In this case a module should not use the types directly but rather use the type operations table
that is registered for every type supported by the ML.

Using these tables is somewhat cumbersome, but is the only way to support types that are not even
registered yet.

This means:
» The number of registered voxel types is potentially unlimited.
» A programmer can add his own voxel types.

» Animage processing algorithm can also use explicit voxel types without use the type operation tables
which is less universal, but usually faster, because the compiler can do more optimizations.

» Operations that are defined on the Sublmage class make use of the registered types.

Application areas for new voxel types could be vector field processing, color voxel filters, voxels with
segmentation information (like bit fields, object indices, etc.), matrix/tensor images, complex numbers,
guaternions, strings as voxels and many more.

7.1.1. Registered Voxel Data Types

The following voxel types are already registered in the ML:
1. < conplexf, and
e conpl exd.

Complex numbers use float and double floating point arithmetics. They make the standard
C++ complex data type available and are implemented in the ML as a template class
M.TConpl exTypel nf os in project ML.TypeExt ensi ons.

2. e+ quaternionf, and

e quat erni ond.

Quaternions use float and double floating point arithmetics. They make the quaternion data type
(from project M_Li near Al gebr a) available and are implemented in the ML as a template class
M.TQuat er ni onTypel nf os in project M_TypeExt ensi ons.

3. + vecf2andvec2,
» vecf3 andvec3,
» vecf4 and vec4,
* vecf5 and vec5,

» vecf6 and vecs,

* vecf7 and vec7,

119

Registered Voxel Data Types

vecf 8 and vec8,

vecf 9 and vec9,

vecf 10 and vec10,
vecf 16 and vec16,
vecf 32 and vec32, and

vecf 64 and vec64.

These voxel types as well as some other specializations of the Scal ar Vect or Tenpl at e (from
project M_Li near Al gebr a) for higher vector dimensions and for float and double data types. They
are implemented in the ML as specializations of the template class M_TDoubl eVect or Typel nf os
in project M_LTypeExt ensi ons.

mat f 2 and mat 2,
mat f 3 and mat 3,
mat f 4 and mat 4,
mat f 5 and nat 5, and

mat f 6 and mat 6.

These matrix voxel types are implemented in the ML as a template class M.TMVat ri xTypel nf os in
project MLTypeExt ensi ons. The used base types can be found in the project MLLi near Al gebr a..

For the registration of these classes, the class Typel nf osBase has been implemented in the project
M.TypeExt ensi ons.

. Note
The standard data types M.ui nt 8, M.int8, M.uint16, M.int16, Muint32, M.int 32,

M.i nt 64, MLf | oat and M_doubl e are also registered for the sake of completeness. Thus it
is possible to request their type properties as with all the other registered data types.

The type information for the standard types are implemented in the ML as specializations
of the template class MLTSt dTypel nf os.

7.1.2. About Standard, Default and Registered Voxel
Types

There are different voxel types sets in the ML.

» Scalar Voxel Types

Standard voxel types are the "normal" data types. They are available in many programming
languages, such as signed and unsigned 8, 16, 32 and/or 64 bit sized integers, float and double types.
They are also the most typical types used for image voxels.

» Default Voxel Types

The default voxel types contains besides the scalar voxel types also some selected extended voxel
types. These are st d: : conpl ex<f | oat >, st d: : conpl ex<doubl e>, Vect or 2f , Vect or 2d, Vect or 3f,
Vect or 3d, Vect or 6f, Vect or 6d, Mat ri x2f , Matri x2d, Mat ri x3f and Mat ri x3d. This should cover
the most common uses e.g. for tensor imaging or complex typed voxels.

* Registered Voxel Types

120

Registered Voxel Data Types

Registered voxel types are loaded to the application code at runtime. Each registered type provides
a function table with basic functions for data addition, subtraction, multiplication, shift and so on.

See Section 7.5.1, “About the Difference Between Scalar, Extended and Registered Voxel Types” for
a detailed voxel type discussion.

121

Registered Voxel Data Types

7.2. Implementing Image Processing on
extended Voxel Data Types

This section gives detailed information on programming with extended voxel types.

This includes

configuring your module to work fine with extended voxel types,
handling compile and runtime decisions between scalar and extended voxel types and their properties,
getting and managing metadata on extended voxel types,

working with templates on extended voxel types outside the template function
cal cul at eQut put Subl mage,

handling generalized registered voxel types and module parameters with Dat aTypeFi el d and
Uni ver sal TypeFi el d, and

advanced configuration and programming issues.

See Section 7.2.3, “Examples with Registered Voxel Types” for examples.

122

Registered Voxel Data Types

7.2.1. Important Functions For Voxel Types

The ML provides many helpful functions that support managing different voxel types and using them
for programming (see Section 7.5.2, “Getting and Managing Metadata About Registered Voxel Types”
for a detailed discussion).

The most important functions are:
e size_t MSizeO (MDataType dt)

returns the size of the data type dt in bytes. On invalid types 0 is returned.
* M.Dat aType M.Cet Dat aTypeFr onmNanme("dat a_t ype_nane")

determines the data type id of the type to be handled, because it is not available as a precompiled
constant.

* bool M. sValidDataType(MDataType dt)
checks whether the data type is registered.
* bool M. sStandardType(M.Dat aType dt)
checks whether the data type dt is a normal built-in compiler type.
* M.Typel nfos* M.Get Typel nf osFor Dat aType(M_Dat aType out DType)

returns a pointer to the M.Typel nf os object, which describes features and properties of the data type,
or returns NULL if out DType is an undefined data type.

The following methods of the «class Pagedimage are normally wused in the
cal cul at eQut put | magePr oper ti es method of self-developed ML module classes when data types are
not appropriate for the implemented algorithm:

* Pagedl mage: : setlnvalid()

invalidates the module output if the module cannot operate, because e.g., the type does not exist or
the data type is not appropriate for the algorithm.

* Pagedl mage: : set St at el nf o(<message>, M.__TYPE NOT_REG STERED)

specifies the reason in <message> why the output image has been invalidated. A connected I nf o
module, for example, will show the reason in its state information.

See Section 7.5.2, “Getting and Managing Metadata About Registered Voxel Types” for information on
further functions.

123

Registered Voxel Data Types

7.2.2. The Basic Concept of Calculating the Output
Sublmage

After the output properties were evaluated in cal cul at eQut put | mageProperties the output
image will be requested by calling the derived function cal cul at eQut put Subl nage(Subl mage
*out Subl ny, int out | ndex, Subl mage *inSublngs) of the module. This function
was generated in MeVisLab before versions 3.6 by a set of preprocessor macros, e.g.
M__ CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_SCALAR TYPES_CPP. Those macros ensured that for
all possible input and output voxel types the function temmplate cal cul at eQut put Subl mage gets
instantiated and called during runtime. These macros and not necessary anymore with the possibilities
of C++17 but are kept for backward compatibility. The file ml TSubl mageVvari ant . h contains a set of
functions. The description of each function contains an example of its usage. These functions can create
from a Sublmage a variant kind type that can be passed to st d: : vi sit and that does the necessary
dispatching to the different instantiations of cal cul at eQut put Subl mage

7.2.3. Examples with Registered Voxel Types

The following examples contain many useful code fragments for handling and using registered voxel
types. For advanced examples see

» Section 7.2.5, “Handling Generalized Registered Voxel Types as Module Parameters” to implement
general module fields that handle parameters for any registered or any standard voxel type.

» Section 7.5.3, “Reducing Generated Code and Compile Times” to have module implementations
compile only standard, only registered or only self-defined voxel types and by that to reduce both
compile time and size of the generated code.

» Section 7.4, “Traps and Pitfalls When Using Registered Voxel Types” to see the difference between
correct and incorrect pointer incrementation when traversing and accessing registered voxels in a
templated cal cul at eQut put Subl mage function.

» Section 7.4, “Traps and Pitfalls When Using Registered Voxel Types” to implement and register your
own voxel type.

Example 7.1. How to Check and Set a Registered Type Safely as the Output Voxel
Type in calculateOutputimageProperties

M.Dat aType dt = M.Dat aTypeFr omNane("vecf3");

if (!MlsValidType(dt)){
out | mage- >set | nval i d();
out | mage- >set Statel nfo("Could not find type 'vecf3' ", M_TYPE _NOT_REGQ STERED);
return;

}
out | mage- >set Dat aType(dt);

This example shows how to select a specific voxel type for the output image. Note that a registered
voxel type is used whose id is unknown at compilation time. That is why the voxel type id is determined
by using the function M_Dat aTypeFr onNane.

124

Registered Voxel Data Types

Example 7.2. How to Write calculateOutputSublmage without Macros

voi d Set Voxel Val ue: : cal cul at eCut put Subl mage(Subl mage *out Subl g, int outlndex, Sublnage *inSubl ngs)
{

auto imagePair =
creat eTSubl mageVari ant Pai r <M_ui nt8, M.int8, Muint16, M.int16, Muint32, Mint32, Muint64,
M.i nt 64, std::conpl ex<M.float>, std::conplex<double>, Vector2f,
Vect or2d, Vector3f, Vector3d, Vector6f, Vector6d, Mtrix2f,
Matrix2d, Matrix3f, Matrix3d>(*outSubl g, inSublngs);

auto visitor = [this, outlndex](auto& ip){ cal cul ateCut put Subl nage(i p.out put, outlndex, ip.input); };

std::visit(visitor, inmagePair);

}

The template parameters of the function cr eat eTSubl mageVari ant Pai r specifies all possible voxel
types that this module can support.

tenpl ate <cl ass DATATYPE>
voi d Set Voxel Val ue: : cal cul at eCut put Subl mage(TSubl mage<DATATYPE>& out | ng, int /*outldx*/, const TSubl nage<DATATYPE>& /*i nl ng*

if (outlng.getBox().contains(_inputVoxel Pos))

out | ng. set | mageVal ue(_i nput Voxel Pos, *(reinterpret_cast <DATATYPE*>(_writeVal ueFl d->get Uni ver sal TypeVal ue())));

}
}

125

Registered Voxel Data Types

Example 7.3. How to Write calculateOutputSublmage for Different Input and
Ouput Voxel Types Without Macros

voi d Different Typesl nput Qut put Exanpl e: : cal cul at eCut put Subl nage(Subl mage *out Subl mage, int outl ndex,
Subl mage *i nSubl mage)
{
auto input =
creat eTSubl mageVari ant <M_ui nt 8, M.int8, Muint16, M.int16, Muint32, M.int32, Muint64, M.int64,
M.f | oat, M.doubl e>(i nSubl nage) ;
auto output =
creat eTSubl mageVari ant <M_ui nt 8, M.int8, Muint16, M.int16, Muint32, M.int32, Muint64, M.int64,
M.f | oat, M.doubl e>(out Subl nage) ;

auto visitor = [this, outlndex](auto& out, const auto& in){ cal cul ateCutput Subl mage(out, outlndex, in); };

std::visit(visitor, output, input);

The C++ function st d: : vi si t creates the cross product of all possible input- and output types.

tenpl ate <typenane T, typenane U>

voi d Di fferent Typesl nput Qut put Exanpl e: : cal cul at eQut put Subl nage(TSubl nage<T>& out put Subl nage,
int outputlndex,
const TSubl mage<U>& i nput Subl nage)

const T constantVal ue = static_cast<T>(_const ant Val ueFl d- >get Doubl eVal ue());

/1 danp box of output inage against inmage extent to avoid that unused areas are processed.
const Subl mageBox val i dQut Box = out put Subl mage. get Val i dRegi on();

/'l Process all voxels of the valid region of the output page.
| mgeVect or p;
for (p.u = validQutBox.vl.u; p.u <= validQutBox.v2.u; ++p.u)

for (p.t = validQutBox.vl.t; p.t <= validQutBox.v2.t; ++p.t)

{
for (p.c = validQutBox.vl.c; p.c <= validQutBox.v2.c; ++p.c)
for (p.z = validQutBox.vl.z; p.z <= validQutBox.v2.z; ++p.z)
for (p.y = validQutBox.vl.y; p.y <= validCQutBox.v2.y; ++p.y)
{
p. x = val i dQut Box. v1. X;
/] Get pointers to row starts of input and output sub-inmages.
const U *inVoxel 0 = i nput Subl mage. get | nagePoi nt er (p) ;
T *out Voxel = out put Subl mage. get | magePoi nter(p);
const M.int rowend = val i dQut Box. v2. X;
/1 Process all row voxels.
for (; p.x <= rowknd; ++p.x, ++outVoxel, ++i nVoxel 0)
*out Voxel = *inVoxel 0 + constant Val ue;
}
}
}
}
}
}

Example 7.4. How to Accept Non-Standard Input Voxels Only

M.Dat aType dt = getl nput | mage(0) - >get Dat aType();
if (MlsValidType(dt) && ! M.IsStandardType(dt)){
out | mage- >set Dat aType(dt);

el se{
/'l Invalidate output inmage if we have an invalid or a standard voxel data type.
out | mage- >set I nval i d();
out | mage- >set St at el nf o("Bad i nput voxel type", M._BAD PARAMETER);

126

Registered Voxel Data Types

This is a similar example which demonstrates how to configure an ML module to accept only registered
voxel types in the input image. (The "!I" before MLl sSt andar dType() can be removed in order to have

the ML module accept only standard types).

Example 7.5. How to Implement a Flip of a Vector3f in calculateOutputSublmage

tenpl ate <typenane DTYPE>
voi d Vecf 3Fli p:: cal cul at eQut put Subl mage(TSubl mage<DTYPE> *out Subl ng,
int outlndex,
TSubl mage<DTYPE> *i nSubl ngl)

/1 NOTE: In this exanple we assume that we have set to operate only on Vector3f voxels.

/1 Canp our page region to the image extent to avoid processing of regions outside the inage.
Subl mageBox out Box = out Subl ng- >get Val i dRegi on() ;

/Il lterate over all voxels of the valid area of the output subi mage.
| mgeVect or p;
for (p.u=outBox.vl.u; p.u<=outBox.v2.u; ++p.u) {
for (p.t=outBox.vl.t; p.t<=outBox.v2.t; ++p.t) {
for (p.c=outBox.vl.c; p.c<=outBox.v2.c; ++p.c) {
for (p.z=outBox.vl.z; p.z<=outBox.v2.z; ++p.z) {
for (p.y=outBox.vl.y; p.y<=outBox.v2.y; ++p.y) {

// Get start position of voxel rows in input and in output inage.
p. X = out Box. v1. X;

DTYPE *i Voxel = inSubl ngl->get!| nagePoi nter(p);

DTYPE *oVoxel = out Subl ng->get | nagePoi nter (p);

/1 Flip all voxels in the row

/1 Warning: Do not iterate with vef3 pointers, because they m ght have
/1l smaller size than DTYPE.

for (; p. X <= out Box.Vv2.x; ++p. X, ++i Voxel, ++oVoxel) {

/'l Flip Vector3f conponents frominput to output.

(*reinterpret_cast<Vector3f*>(oVoxel))[0] = (*reinterpret_cast<Vector3f*>(iVoxel)
(*reinterpret_cast<Vector3f*>(oVoxel))[1] (*reinterpret_cast<Vector3f*>(i Voxel)
(*reinterpret_cast<Vector3f*>(oVoxel))[2] (*reinterpret_cast<Vector3f*>(i Voxel)

This example shows a possible way of how to implement the template
cal cul at eQut put Subl nage to flip the three components of a Vect or 3f .

Example 7.6. How to Request a Specific Voxel Type

voi d Exanpl eMbdul e: : cal cul at eCut put | negeProperti es(i nt outlndex, Pagedl nage* out | ng)

/! Force the input voxel data type to be of Vector2f; set it for inage at index O
/| because we have only one input inage.

out | ng- >set | nput Subl mageDat aType(0, M.Dat aTypeFr onNane("vecf2"));

)[2];
)1l
)[Ol;

function

This example demonstrates how to implement cal cul at eCQut put | ragePr operti es to request a specific
voxel type for the input subimage. If the input type does not match the requested type, the ML will
automatically cast the voxels. Normally, this is done component-wise for registered voxel types. Be

aware of the following:

e The algorithm must use

the

M__CALCULATE_OUTPUTSUBI MAGE_NUM | NPUTS_* DI FFERENT | NPUT_DATATYPES macros to be able

to handle different types of input and output subimages.

127

Registered Voxel Data Types

e The template function cal cul at eCQut put Subl mage must use two template
parameters to distinguish the two types. See documentation of the
M__ CALCULATE_OUTPUTSUBI MAGE_NUM | NPUTS_* DI FFERENT | NOUT_DATATYPES macros.

« Some compilers have problems with the large amount of generated code. See Traps And Pitfalls
When Using Registered Voxel Types for solutions.

« Implicit casts between registered voxel type are relatively slow, because they are done component-
wise.

Example 7.7. How to Convert a vecf2 to a vecf3

// Use a macro to call the tenplate function with different input and output tenplate argunents.
M._CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_DI FFERENT_DEFAULT_I NOUT_DATATYPES_CPP(Vecf 2ToVecf 3Converter);

tenpl ate <typenane OTYPE, typenane | TYPE>
voi d Vecf 2ToVecf 3Convert er: : cal cul at eCut put Subl mage(TSubl mage<DTYPE> * out Subl ng,
int outlndex,
TSubl mage<DTYPE> *i nSubl ngl)

/1 NOTE: In this exanple we assume that we have set Vector2f as input and Vector3f as output type.

/1 C anp our page region to the image extent to avoid processing of regions outside the inmage.
Subl mageBox out Box = out Subl ng- >get Val i dRegi on() ;

/! lterate over all voxels of the valid area of the output subinmage.
| mgeVect or p;
for (p.u=outBox.vl.u; p.u<=outBox.v2.u; ++p.u) {
for (p.t=outBox.vl.t; p.t<=outBox.v2.t; ++p.t) {
for (p.c=outBox.vl.c; p.c<=outBox.v2.c; ++p.c) {
for (p.z=outBox.vl.z; p.z<=outBox.v2.z; ++p.z) {
for (p.y=outBox.vl.y; p.y<=outBox.v2.y; ++p.y) {

|/l Get start position of voxel rows in input and in output inage.
p. X = out Box. v1. x;

I TYPE *i Voxel = inSubl ngl->get!| magePointer(p);
OTYPE *oVoxel = out Subl ng- >get | magePoi nt er (p);
for (; p. X <= out Box. v2. X; ++p. x, ++i Voxel, ++oVoxel) {

(*reinterpret_cast<Vector2f*>(i Voxel))[0];

(*reinterpret_cast<Vector2f*>(iVoxel))[1];

(*reinterpret_cast<Vector2f*>(i Voxel))[0] *
(*reinterpret_cast<Vector2f*>(iVoxel))[1];

(*reinterpret_cast <Vector 3f *>(oVoxel))[0]
(*reinterpret_cast<Vector 3f *>(oVoxel))[1]
(*reinterpret_cast<Vector 3f *>(oVoxel))[2]

This example shows how to implement cal cul at eQut put Subl nage to convert a vec2f to a vec3f
by writing the product of the first two vector components into the third one. Note that this example
still compiles all possible combinations of input and output voxel types, although only one specific
combination is used. This version might be useful when other algorithm parts still use other type
combinations, otherwise the following version is recommended.

128

Registered Voxel Data Types

Example 7.8. How to Convert a Vector2f to a Vector3f Without Template Code

voi d Vecf 2ToVecf 3Convert er: : cal cul at eCut put Subl mage(Subl nage *out Subl ng, int outlndex, Sublnmage *inSubl ngs)
{

/1 NOTE: In this exanple we assume that we have set Vector2f as input and Vector3f as output type.

/! C anp our page region to the image extent to avoid processing of regions outside the inage.
Subl mageBox out Box = out Subl ng- >get Val i dRegi on() ;

/'l Get the sizes of the input and output voxels.
const size_t iVoxSize = M.Si zeO (i nSubl ngs- >get Dat aType());
const size_t oVoxSize = M.Si zeOf (out Subl ng- >get Dat aType()) ;
/! lterate over all voxels of the valid area of the output subinmage.
| mgeVect or p;
for (p.u=outBox.vl.u; p.u<=outBox.v2.u; ++p.u) {
for (p.t=outBox.vl.t; p.t<=outBox.v2.t; ++p.t) {
for (p.c=outBox.vl.c; p.c<=outBox.v2.c; ++p.c) {
for (p.z=outBox.vl.z; p.z<=outBox.v2.z; ++p.z) {
for (p.y=outBox.vl.y; p.y<=outBox.v2.y; ++p.y) {

|/l Get start position of voxel rows in input and in output inage.

p. X = out Box. v1. X;

M.TypeData *i Voxel = static_cast<M.TypeDat a*>(i nSubl ngs- >get | nagePoi nter (p));
M.TypeDat a *oVoxel = static_cast <M.TypeDat a*>(out Subl ng- >get | nagePoi nter (p));
for (; p.x <= outBox.v2.x; ++p.x) {

(*reinterpret_cast <Vector 3f *>(oVoxel))[0]
(*reinterpret_cast<Vector 3f *>(oVoxel))[1]
(*reinterpret_cast <Vector 3f *>(oVoxel))[2]

(*reinterpret_cast<Vector2f*>(i Voxel))[0];

(*reinterpret_cast<Vector2f*>(iVoxel))[1];

(*reinterpret_cast<Vector2f*>(i Voxel))[0] *
(*reinterpret_cast<Vector2f*>(iVoxel))[1];

i Voxel += i VoxSi ze;
oVoxel += oVoxSi ze;

This example explicitly implements the virtual method cal cul at eQut put Subl mage without using any
M._CALCULATE_QUTPUTSUBI MAGE macro. Note that we do not have explicit voxel types anymore. We
must use the untyped (void) versions to get voxel positions to the raw data and the sizes of the voxels
to move pointers correctly. However, the amount of generated code is considerably smaller, and the
compile times are faster.

129

Registered Voxel Data Types

7.2.4. Compile and Runtime Decisions on Standard
and Registered Voxel Types

In order to optimize an algorithm, either with regard to performance or with regard to precision, it is
sometimes useful to distinguish between data types or between data type properties. A typical example
is: the programmer would like to know whether the template type is an integer, a floating point, a
registered, a signed or an unsigned type.

The ML provides a number of functions that return flags depending only on the pointer type; the pointer
value is ignored:

* M.l sStandardTypePtr (const T* ptr),

e M.I sSi gnedTypePtr (const T* ptr),

e MlIs8_16_Or_32Bitlnteger TypePtr (const T* ptr),
* M.Is8BitlntegerTypePtr (const T* ptr),

* M.Is16BitlntegerTypePtr (const T* ptr),

e M.Is32Bitlnteger TypePtr (const T* ptr),

* M.Is64Bitl nteger TypePtr (const T* ptr),

* M.IsBuiltlnlntegerTypePtr (const T* ptr),

e M. sBuiltlnFl oatingPoi nt TypePtr (const T* ptr),

The following functions return other values such as data type enumerators and sizes, or they activate
function tables for registered types:

e M.CGet Dat aTypeFronPtr (const T* ptr),

* M.Cet Dat aTypeSi zeFronPtr (const T* ptr),

‘ Note
The above functions are traits, i.e., they are constant at compile time and can be "optimized
away" by compilers. Hence, these functions can even be used in time-critical code.

130

Registered Voxel Data Types

7.2.5. Handling Generalized Registered Voxel Types as
Module Parameters

Some modules require an arbitrary voxel type and its values to be selected and handled. The ML offers
the fields M_Dat aTypeFi el d and Uni ver sal TypeFi el d to meet this requirement.

1. An Enunfiel d can simply be configured to offer a selectable list of all standard and registered
voxel types to the user.

2. A Universal TypeFi el d allows to handle a value from a freely selectable M_Dat aType,; it also -
with certain limitations - implicitly converts data from one type to another when its data type is
changed. The filling of values in arbitrarily typed images, for example, can easily be specified, even
for registered voxel types.

3. An M.Dat aTypeFi el d stores an M.Dat aType value; it is useful whenever any data type needs to
be specified, for example for output images and internal buffers. It is rarely used because in most
cases the first version with an Enunfi el d version is safer and easier for module users, because
there is no need to write the string name of the type correctly.

The following code fragments show how to configure the output image of an ML module with one output
and with a fill value of an arbitrary standard or registered voxel type.

Header file:

/1! Field containing the type of the sel ected voxel type. Default is Mdoubl eType.
Enunfi el d *_voxTypeFl d;

/1! Field containing the type of the selected voxel type. Default is O.
Uni ver sal TypeFi el d *_voxVal FI d;

C++-File, Constructor:
handl eNot i fi cati onCff ();

/1 Add voxel type field by using the string table of all standard and registered voxel
/'l types and its size. Also set the default to the doubl e voxel type.

_voxTypeFl d = addEnun("voxel Type", M.DataTypeNanes(), MNunDataTypes());

_voxTypeFl d- >set EnunVal ue(M_doubl eType) ;

_voxTypeFl d- >at t achFi el d(get Qut put | mageFi el d(0));

/! Add a field to the npdul e which contains a value of the selected data type.
_voxVal ueFl d = addUni ver sal Type("voxel Val ue");

_voxVal ueFl d- >set Dat aType((M.Dat aType) (_dat aTypeFl d- >get Enunval ue()));

_voxVal ueFl d- >set Stri ngVal ue("0");

_voxVal ueFl d- >at t achFi el d(get Qut put | negeFi el d(0));

handl eNot i fi cati onOn();

C++-File, handl eNot i fi cati on:

/1 Be sure that the Universal Type field is always of the selected voxel type.
if (field == _voxTypeFI d){

_voxVal ueFl d- >set Dat aType((M.Dat aType) (_voxTypeFI d- >get EnunVal ue()));
}

if (field == _voxVal ueFl d) {
// Get the value of the selected data type as string.
std::string strVal = _voxVal ueFl d->get Stri ngVal ue();

/'l Get a pointer to menpbry containing the value of the selected type.
M.TypeData *fillVal = _voxVal ueFl d- >get Uni ver sal TypeVal ue() ;
}

C++-File, cal cul at eQut put | mageProperti es:

/] Set output inage to the selected data type.
out | ng- >set Dat aType ((M.Dat aType) (get Dat aTypeFl d() - >get EnunVal ue()));

C++-File, cal cQut Submage:

/1 Fill output subinmage with the user defined val ue.

131

Registered Voxel Data Types

out Subl mg->fil | (*((DATATYPE*) (get Fi | | Ext Val ueFl d() - >get Uni ver sal TypeVal ue())));

132

Registered Voxel Data Types

7.3. Limitations of Registered Data Types

Registered voxel types have some limitations:

Since modules do not inline the code of registered voxel data types, one voxel operation requires
one call to the registered operation, i.e., registered data types are slightly slower than built-in data
types. This is usually is not a problem because these operations are often complex so that the call
itself is not that expensive compared to the real voxel operation. To achieve maximum performance,
a module can also implement specialized code that does not work via registered types.

For performance and technical reasons, instances of new voxel data types must have a constant size,
they cannot have dynamic members, and mencpy() must be able to copy them without using copy
constructors. (So-called "POD types", i.e. "plain old data" types.)

133

Registered Voxel Data Types

7.4. Traps and Pitfalls When Using
Registered Voxel Types

You might experience some problems when using or implementing modules with registered voxel types.
The following hints might help you to solve these problems:

1. There are no extended voxel types available, even modules like Constantlnmage or
I magePr opert yConvert do not offer them in their data type selection.

» Check whether the loading of extended voxel types has been suppressed.

e Check whether the library M_.TypeExt ensi ons is available in the search paths of MeVisLab. It
contains the code for the registered voxel types generally used.

» Check whether the application or MeVisLab loads M_TypeExt ensi ons before the types are used.
In the case of MeVi sLab, the corresponding . def file must specify the tag Pr el oadDLL to force
loading at application startup.

2. The compiler fails "complaining" that the generated code is too large or too complex.

» Template functions must often be instantiated for all types or even for all combinations of two
template types. This can lead to a significant amount of code which exceeds the predefined limits
of the compiler. Check the following options:

a.

Simplify the generated code or template function. This can either be done by simplifying
the code itself, or by moving code into non-templated functions, if possible, or by reducing
compilation to the really needed types. See Section 7.5.3, “Reducing Generated Code and
Compile Times” for more information.

Increase the compiler limits. This can be done in MeVisLab projects, for example, by setting
MSVC_COMPI LERSTACK = 800 or higher before the file includes in the . pr o file.

134

Registered Voxel Data Types

7.5. Advanced Issues on Registered Voxel
Types

The following paragraphs describe some features for advanced configurations of your ML module. This
includes:

» a detailed description of the differences between standard, extended and registered voxel types
(Section 7.5.1, “About the Difference Between Scalar, Extended and Registered Voxel Types”),

« information on how to get and manage metadata about registered voxel types (Section 7.5.2, “Getting
and Managing Metadata About Registered Voxel Types”),

« information on how to reduce generated code and shorten compile times (Section 7.5.3, “Reducing
Generated Code and Compile Times”),

« information on how to configure supported voxel types (Section 7.5.4, “Configuration of Supported
Voxel Types”),

 information on how to implement a new voxel data type(Section 7.5.5, “Implementing a New Voxel
Data Type by Deriving from MLTypelnfos”).

7.5.1. About the Difference Between Scalar, Extended
and Registered Voxel Types

There are three different kinds of voxels types you need to distinguish when you want to understand
how the ML works in detail.

» Scalar Voxel Types

Scalar voxel types are primitive data types. They are available in many programming languages, such
as signed and unsigned 8, 16, 32 and/or 64 bit sized integers, float and double types. They are also
the most typical types used for image voxels.

In the ML, these types are called M.uint8, M.int8, Muint16, M.int16, Muint32, M.int32,
M.i nt 64, M.fl oat, and M.doubl e. There are also enumerator constants called M.ui nt 8Type,
M.i nt 8Type, M.ui nt 16Type, M.int16Type, M.uint32Type, M.int32Type, Mfl oat Type, and
M.doubl eType, respectively.

‘ Note
For compatibility reasons, the M_ui nt 64 type is not supported in the ML.

» Extended Voxel Types

Extended voxel types are all types that are composed of more than one component, e.g. complex,
guaternion, vector or matrix types.

There is a set of default extended types that is supported by some macros that are used to
instantiate template methods for image calculation: st d: : conpl ex<f | oat >, st d: : conpl ex<doubl e>,
Vect or 2f, Vect or 2d, Vect or 3f, Vect or 3d, Vect or 6f, Vect or 6d, Matri x2f, Matri x2d, Matri x3f
and Mat ri x3d. Apart from these macro where these types are 'hardcoded’, these types have no other
special meaning.

* Registered Voxel Types

Registered voxel types are loaded to the application code on runtime. Each registered type provides
a function table with functions for data addition, subtraction, multiplication, shift and so on. This table

135

Registered Voxel Data Types

can be used to perform operations on this type.They also provide an M_.Typel nf o data structure
describing their properties, such as name, number of components, size, etc.

The pre-registered types all have enumerators, type traits descriptions (via the TypeTr ai t s template
class) and type names that can be used in code directly.

136

Registered Voxel Data Types

7.5.2. Getting and Managing Metadata About
Registered Voxel Types

The ML provides a number of functions to analyze, convert, process and manage a data type and its
values as well as the components of these values.

These functions are useful for building modules that apply abstract operations on arbitrary data types,

for example decomposing a voxel of any data type into its components or casting any arbitrary registered
data type to another one.

‘ Note
All these functions are part of the C-API of the ML. Hence they can also be used for
managing voxel data in C programs or in modules that do not include the C++ API of the ML.

You do not have to distinguish between scalar and registered voxel data. The following
functionality also works fine on scalar voxel types and data.

The most important functions

e ML.Si zeO (M.Dat aType dt),

* M.Get Dat aTypeFromName (const char* dt Nane),

* M. sValidDat aType (M.DataType dt),

* M. sScal ar Type (M.DataType dt),

e M.Get Typel nf osFor Dat aType (M.Dat aType dt), and

which are often used for module development, are described in Section 7.2.1, “Important Functions For
Voxel Types”.

7.5.2.1. Functions for Managing Components of Registered Voxel
Types

Functions for managing voxel components:
* const char* M.Get CDat aTypeNamneFor Char Code(char code);

Returns the basic C/C++ data type name corresponding to a character representing it. On invalid
codes " is returned.

e const char* M.Get M_.Dat aTypeNaneFor Char Code(char code);

Returns an ML type name compatible with a character representing it. On invalid codes ™" is returned.

The return value match for function calls to M_Dat aTypeFr omNane() .
* M.Dat aType M.Get M.Dat aTypeFor Char Code(char code);
Returns an ML data type compatible with a character representing it. On invalid codes -1 is returned.

e Miint32 M.TypeCet Conponent Properties(char code, Mint32* isSigned, M.int32*
i sl ntegerType, M.int32* isFloatingPointType, M.int32* isLongType);

Returns 1 (=true) in *i sSi gned, *i sl nt eger Type, *i sFl oat i ngPoi nt Type and *i sLongType if
the component type represented by code includes this features, otherwise setthatflagto 0 (=f al se) .

137

Registered Voxel Data Types

Invalid code values return 0 (=fal se) in all parameters. It is explicitly permitted to pass NULL as
i sSi gned, i sl nteger Type, i sFl oati ngPoi nt Type or i sLongType to ignore these. 1 (=true) is
returned if conp was a valid component, otherwise the return value is 0 (=f al se).

size_t M.TypeConponent Si ze(char conp);

Returns the size of a MLTypeComponent denoted by a character code. On invalid character codes,
0 is returned. Valid codes are:

e 'b' =bool
e 'c' = unsigned char
e 'C'=char

¢ 's' = unsigned short

* 'S'=short

 'i"= unsigned int

e 'I'=int

e 'I'=unsigned long
e 'L'=long

e '6'= MLint64

o 'f' = float

« 'd'=double

e 'D'=long double
voi d M_.TypeSet Doubl eConponent (char conp, M.double val, MTypeData *dstPtr);

Interprets the data referenced by *dst Pt r as data of the type conp and sets its value from the passed
M.doubl e value by casting the val to it. Invalid character codes are ignored.

voi d M_.TypeSet | nt Conponent (char conp, MCTInt val, MTypeData *dstPtr);
Same as M_TypeSet Doubl eConponent , but components are set to integer values.

void M.TypeSet Al | Doubl eConponent s(const M.Typel nfos *i nf os, M.doubl e val,
M.TypeData *dstPtr);

All components of the data referenced by *dst Pt r are set to a value cast from the M_doubl e value
val . Casting is performed by the M.TypeSet Conponent function.

voi d M.TypeSet Al | I nt Conponent (const M.Typelnfos *infos, MCTInt val, MTypeData
*dstPtr);

Same as MLTypeSet Al | Doubl eConponent s, but components are set to integer values.
M_doubl e M_TypeGet Doubl eConponent (char conp, const M.TypeData *dstPtr);

Interprets the data referenced by *dst Pt r as data of the type conp and returns it as an M_doubl e
value. Invalid character codes are ignored and 0 is returned.

MLCTI nt M.TypeGCet | nt Conponent (char conp, const M.TypeData *dstPtr);

Same as M.TypeGet Conponent , but components are returned as integer values.

138

Registered Voxel Data Types

e void M.TypeShi ft Lef t Conponent (char conp, const M.TypeData *srcPtr, M.CTInt shiftlLs,
M.TypeData *dstPtr);

Interprets the data referenced by *dst Pt r as data of the type conp and shifts data shi ft Ls times to
the left, if it is an integer component. Floating point components are multiplied Wlth 25" °. Negative
values for shiftLs are interpreted as shift right operations or divisions by 2° hiftLs respectively.
Boolean components become f al se on all shiftLs != 0. Zero shi ftLs does not change values.
Invalid character codes are ignored, i.e., pointers and values are not changed.

139

Registered Voxel Data Types

7.5.2.2. Convenience Functions to Operate on Registered Voxel
Data

Functions to operate on data of registered voxels:

e M.TypeData *M.Al | ocat eVoxel Buf fer (M.Dat aType dataType, size_t nunVoxels, const
M.TypeDat a *voxDefaul t);

Returns a buffer of nunvoxel s voxels of data type dataType. On failure, NULL is returned. If
voxDef aul t is NULL, the allocated memory is left undefined, otherwise all voxels are filled with the
default value pointed to by voxDef aul t . The allocated buffer must be removed with MLFr ee() .

e char *M.Get Voxel Val ueAsStri ng(const M.TypeData *dat a, M.Dat aType dataType,
MLEr r or Code *err Code);

Interprets the data given by dat a as a value of type dat aType and returns its value as a string. If
anything fails, "™ is returned. er r Code may be passed as NULL. If err Code is not NULL, *err Code
is set to the error code on failures; otherwise it is set to ML_RESULT_OK. Floating point values are
normally printed with maximum precision. The returned pointer must be freed with M_Fr ee() .

e char *M.Get Voxel Val ueAsStringLi mted(const M.TypeData *data, M.DataType dataType,
MLErr or Code *err Code, int maxPrec);

Interprets the data given by dat a as a value of type dat aType and returns its value as a string. If
anything fails, "™ is returned. er r Code may be passed as NULL. If err Code is not NULL, *err Code
is set to the error code on failures; otherwise it is set to ML_RESULT_OK. If maxPr ec is passed with
a negative value, the maximum precision of floating point numbers is printed. If passed >= 0, the
number of digits is limited to maxPr ec. It will be not larger than the maximum default precision, even
when it is accordingly specified. The returned pointer must be freed with MLFree().

e char *M.TypeConponentsToStri ng(const M.Typelnfos *infos, const MTypeData *p);

Converts a data type instance to a string. i nf os point to the type information and p points to the data
of the type instance. The return value is a string containing the type components which are converted
to string values that are separated by spaces. It must be freed with MLFr ee() . Floating point values
are normally printed with maximum precision. On failures (e.g. i nf os==NULL, p==NULL), an empty
string is returned which also must be freed.

e char *M.TypeConponent sToStringLi mi ted(const M.Typelnfos *infos, const M.TypeData
*p, int nmaxPrec);

Converts a data type instance to a string. i nf os point to the type information and p points to the data
of the type instance. The return value is a string containing the type components which are converted
to string values that are separated by spaces. It must be freed with MLFr ee() . If maxPr ec is passed
with a negative value, the maximum precision of floating point numbers is printed. If passed >= 0,
the number of digits is limited to maxPr ec. It will not be larger than the maximum default precision
even if specified so. On failures (e.g., i nf os==NULL, p==NULL), an empty string is returned which
also must be freed.

* M.int32 M.TypeConponent sFronttri ng(const M.Typel nfos *infos, const char *str, const
M.TypeDat a *defaul tVal, M.TypeData *p);

Converts a string of a data type instance to instance data, i.e., like an sscanf. i nf os point to the
type information and p points to the data of the type instance to be filled with data scanned from the
string. The return value is 1 if the string could be scanned successfully. On scan failures or invalid
parameters, 0 is returned. If a default value is passed in def aul t Val , components which could not
be scanned correctly are copied from their corresponding positions in def aul t Val . If def aul t val is
passed as NULL, those components are left unchanged.

140

Registered Voxel Data Types

M.i nt 32 M.TypeConponent sFronStrean{void *iStr, void *iStrStream void *stdi Str,
voi d *stdi StrStream const M.Typelnfos *infos, MTypeData *data);

Reads data type components into different stream versions (i streamand i strst reamwithin and
outside the standard namespace). Since we have a C interface here, we need to pass the pointers
to the streams as voi d* addresses. Hence be careful to which of the first parameters the stream is
passed. All other can be set to NULL. On any error, *dat a is correctly set as far as possible, and all
unreadable values are set to the default value. On bad parameters, failures or not completely readable
values, 0 is returned, otherwise 1.

M.doubl e M_Get Voxel Val ueAsDoubl e(const voi d *data, M.DataType dat aType, M.Error Code
*err Code) ;

Interprets the data given by dat a as a value of type dat aType and return its value cast to double.
If anything fails then 0 is returned. er r Code may be passed as NULL. If err Code is not NULL then
*err Code is set to the error code on failures; otherwise it is set to M._RESULT_CK.

M_.CTBool M.TypeCast ToBool (const M.Typel nfos *infos, const MTypeData *p);

If p is identical to default element, f al se (= 0) is returned, otherwise true (= 1).

MLCTI nt M.TypeCast Tol nt (const M.Typel nfos *infos, const M.TypeData *p);

The first component of the data type p is converted to integer and returned.

M.doubl e M.TypeCast ToDoubl e (const M.Typel nfos *i nfos, const M.TypeData *p);
The first component of the data type p is converted to double and returned.

voi d M_TypeCast FronBool (const M.Typel nfos *infos, M.CTBool p, MTypeData *q);

If p == 0 then q is set to the type default value given by i nfos. If p ! = 0 then all components of
the type are cast to their values cast from 1.

voi d M_.TypeCast From nt (const M.Typelnfos *infos, MCTInt p, MTypeData *q);

The integer value of p is cast to the types of the components and then written to them.

voi d M_TypeCast Fr onDoubl e (const M.Typel nfos *infos, Mdouble p, MTypeData *q);
The value p is cast to the types of the components and then written to them.

voi d MLTypeBi naryAndl nt (const M.Typel nfos *infos, const M. TypeData *p, M.CTInt q,
M.TypeData *r);

Takes all components from p as integer values, applies a bitwise 'and' operation with g and writes
them as (cast from) integer values back to the corresponding components of r .

voi d M.TypeBi naryOrint (const M.Typel nfos *infos, const M.TypeData *p, MCTInt q,
M.TypeData *r);

Takes all components from p as integer values, applies a bitwise 'or' operation with g and writes them
as (cast from) integer values back to the corresponding components of r.

voi d M_LTypeBi naryXorlnt (const M. Typel nfos *infos, const M. TypeData *p, MCTInt q,
M.TypeData *r);

Takes all components from p as integer values, applies a bitwise 'xor' operation with g and writes
them as (cast from) integer values back to the corresponding components of r .

void M.TypeBinaryAnd (const M.Typelnfos *infos, const MTypeData *p, const
M.TypeData *q, M.TypeData *r);

141

Registered Voxel Data Types

Takes all components from p as integer values, applies a bitwise 'and’ operation with corresponding
components from q (also as integers) and writes them as (cast from) integer values back to the
corresponding components of r .

voi d ML.TypeBi naryOr (const M.Typel nfos *i nfos, const M.TypeData *p, const M.TypeDat a
*q, M.TypeData *r);

Takes all components from p as integer values, applies a bitwise 'or' operation with corresponding
components from q (also as integers) and writes them as (cast from) integer values back to the
corresponding components of r .

void M.TypeBinaryXor (const M.Typelnfos *infos, const M.TypeData *p, const
M.TypeData *q, M.TypeData *r);

Takes all components from p as integer values, applies a bitwise 'xor' operation with corresponding
components from g (also as integers) and writes them as (cast from) integer values back to the
corresponding components of r .

void M.TypeShi ft ConponentsLeft(const M.Typelnfos *infos, const M.TypeData *p,
M.CTInt q, M.TypeData *r);

Takes one data type component after another and shifts each component left shi ft Ls times if it is an
integer component. Floating point components are multlplled with 2" °. Negative values for shi f t Ls
are interpreted as shift right operations or divisions by 25N Ls, respectively. Boolean components
become fal seonall shiftLs != 0.Zero shiftLs does not change any component.

void M.TypeCast ToO her Type(const M.Typel nfos *ot her | nf os, const M.TypeDat a
*ot herData, const M.Typelnfos *nylnfos, M.TypeData *nyData);

Converts a data instance referenced by ot her Dat a of a type specified by ot her | nf os to another data
instance referenced by * nyDat a of a type specified by nyl nf os. As long as components of any data
type in the source exist, the nyDat a components are set to the same values. Components which do
not have a counterpart in the ot her Dat a are filled with the counterparts from its default value given by
the nyl nf os. E.g.: If an (int, char, double) data type (represented by "ICd") is cast to a four component
float vector (represented by "ffff"), then the first three components are set from an int cast to double,
from an char cast to double and from an double cast to double. The fourth component is copied from
the fourth component of the type default value given in the dst | nf os of type M_Typel nf o.

void M.TypeCast Frontx her Type(const M. Typelnfos *otherlnfos, const M.TypeData
*ot her Data, const M.Typel nfos *nylnfos, MTypeData *nyData);

Casts another data element ot her Dat a with attributes given by ot her | nf os to myDat a of a type given
by nyl nf os. See M_TypeCast ToQt her Type for more infos.

M.i nt 32 M.Typel sEqual ToO her Type(const M.Typel nfos *nylnfos, const M.TypeData
*nyData, const M.Typel nfos *otherlnfos, const M. TypeData *ot herData);

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a type
given by nyI1 nf os. If that buffer is equal to myDat a then 1 (=t r ue) is returned, otherwise 0 (=f al se) .
For the comparison nyl nf os- >i sEqual ToType is used.

M.i nt 32 M.Typel sSmal | er ThanQt her Type(const M.Typel nfos *nyl nfos, const M.TypeDat a
*nmyData, const M.Typel nfos *otherlnfos, const M.TypeData *ot her Dat a);

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a
type given by nyI nf os. If that buffer is smaller than nmyDat a then 1 (=t rue) is returned, otherwise 0
(=f al se) . For the comparison nyI nf os- >i sSmal | er ThanType is used.

M.i nt 32 M.Typel sGr eat er ThanQt her Type(const M.Typel nfos *nyl nfos, const M.TypeDat a
*nyData, const M.Typel nfos *ot herlnfos, const M.TypeData *ot herData);

142

Registered Voxel Data Types

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a
type given by nyl nf os. If that buffer is greater to nyDat a then 1 (=t rue) is returned, otherwise 0
(=f al se) . For the comparison nyl nf os- >i sG eat er ThanType is used.

voi d ML TypeMul t Wt hQt her Type(const M.Typel nfos *nyl nfos, const M.TypeData *nyDat a,
const M.Typel nfos *ot herlnfos, const M. TypeData *otherData, M.TypeData *r);

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a
type given by nyI nf os. That buffer is multiplied with nyDat a and written into r . For the multiplication
nyl nf os->nul t Wt hType is used.

voi d M.TypeDi vByQt her Type(const M.Typel nfos *nylnfos, const M.TypeData *nyData,
const M.Typel nfos *ot herlnfos, const M.TypeData *otherData, M.TypeData *r);

Casts another data element ot her Dat a with attributes given by ot her | nf os to a local buffer of a type
given by nyl nf os. Then nyDat a is divided by the buffer and written into r . For the division ny! nf os-
>di vByType is used.

voi d ML TypeAddCt her Type(const M.Typel nfos *myl nf os, const M.TypeData *myDat a, const
M.Typel nfos *ot herlnfos, const M.TypeData *otherData, M.TypeData *r);

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a type
given by nyl nf os. That buffer is added with myDat a and written into r . For the addition nyl nf os-
>addToType is used.

voi d MLTypeSubtract O her Type(const M.Typel nfos *nyl nfos, const M.TypeData *nyDat a,
const M.Typel nfos *ot herlnfos, const M. TypeData *otherData, M.TypeData *r);

Casts another data element ot her Dat a with attributes given by ot her I nf os to a local buffer of a
type given by nyl nf os. That buffer is subtracted from myDat a and written into r . For the subtraction
nyl nf os- >subt r act Fr onfType is used.

voi d M.TypePower O Ot her Type(const M.Typel nfos *nylnfos, const M.TypeData *nyData,
const M.Typel nfos *ot herlnfos, const M.TypeData *otherData, M.TypeData *r);

Casts another data element ot her Dat a with attributes given by ot her | nf os to a local buffer of a type
given by nyl nf os. The power of nyDat a with the buffer is calculated and written into r . For the power
calculation nyl nf os- >power O Type is used.

143

Registered Voxel Data Types

7.5.3. Reducing Generated Code and Compile Times

Sometimes a module programmer knows that a module only makes sense for images with certain voxel
types. In this case, the number of potential voxel types can be reduced so that the code is smaller and
the compilation times are shortened.

Typical application areas are binary operations on voxels which only work fine on integer voxels; or
operations on normalized values which are always between 0 and 1 and consequently require floating
point type voxels to avoid information loss. Also, some operations such as gradient calculations or tensor
imaging might require operations which only make sense on registered vector or matrix voxels.

A typical ML module uses a M__CALCULATE OUTPUTSUBI MAGE macro to compile the template
cal cul at eQut put Subl mage function for all scalar types:

/1 Inplenments the call to the typed cal cul at eQut put Subl mage nethod for all potential data types.
M._CALCULATEOQUTPUTSUBI MAGE_NUM | NPUTS_1_SCALAR_TYPES_CPP(Nor mal Mbdul e) ;

/1t Fill output page with calculated data in a nodule with one input.
tenpl ate <typenane DATATYPE>
voi d Nor mal Mbdul e: : cal cul at eQut put Subl mage(TSubl mage<DATATYPE> *out Subl ng,
int outlndex, TSubl mage<DATATYPE> *i nSubl ng)

I/ Calcul ate contents of outSublng here.

}

The following example shows how to compile the template function for all available integer types only.
It uses a special M__CALCULATE_QUTPUTSUBI MAGE macro which accepts an additional parameter to
determine the set of data type cases to be compiled:

/1 Inplenents the call to the typed cal cul at eQut put Subl nege nethod for all integer types.
M.__CALCULATEOUTPUTSUBI MAGE_NUM | NPUTS_1_W TH_CUSTOM SW TCH_CPP(Cal cTest, M._| MPLEMENT_| NT_CASES) ;

/1! Fill output page with calculated data in a nodule with one input.
tenpl at e <typenane DATATYPE>
voi d Nor mal Modul e: : cal cul at eQut put Subl mage(TSubl nage<DATATYPE> * out Subl ng,
int outlndex, TSubl nage<DATATYPE> *i nSubl ng)

// Calculate contents of outSublng here.

}

The following predefined type configurations of data type cases can be used:

e M__| MPLEMENT_| NT_CASES - Implements all integer types.

e M__I MPLEMENT_FLQAT_CASES - Implements all floating point types.

e M__I MPLEMENT_I| NT_FLQAT_CASES - Implements all integer and floating point types.

e M__I MPLEMENT_| NT_FLQAT_CASES WO | NT64 - Implements all integer and floating point types without
the 64 bit integer types.

e M__I MPLEMENT_COMPLEX_CASES - Implements the complex types.

e M__I MPLEMENT_VECTOR_CASES - Implements the default vector types: Vect or 2, Vect or 3 and Vect or 6
(both with float and double component types).

e M__I MPLEMENT_NATRI X_CASES - Implements the default matrix types: Mat ri x2 and Matri x3 (both
with float and double component types).

e M__I MPLEMENT_SCALAR CASES - Identical to M._| MPLEMENT _I NT_FLQOAT _CASES which implements the
scalar voxel types used in most ML modules.

« M__I MPLEMENT _DEFAULT CASES - This combines M__| MPLEMENT_SCALAR CASES,
M__| MPLEMENT _COMPLEX_CASES, M._| MPLEMENT _VECTOR CASES and M._| MPLEMENT _MATRI X_CASES.

You can also configure your own combinations using the following constants:

144

Registered Voxel Data Types

e M__I MPLEMENT_| NT8_CASE and M__| MPLEMENT_Ul NT8_CASE - Signed and unsigned 8 bit integers.

M__| MPLEMENT_| NT16_CASE and M__| MPLEMENT_Ul NT16_CASE - Signed and unsigned 16 bit integers.
e M__I MPLEMENT_I NT32_CASE and M__| MPLEMENT_UI NT32_CASE - Signed and unsigned 32 bit integers.
e M__I MPLEMENT_| NT64_CASE - Signed 64 bit integer.

» M__I MPLEMENT_FLOAT_CASE, M__| MPLEMENT_DOUBLE_CASE - Floating point types.

In the following example only the M.i nt 64, the M_doubl e and all complex types are compiled:

#def i ne M__I MPLEMENT_LARGE_AND_COVPLEX_CASES(CLASS_NAME, SW TCH CCDE, DUMMY1, DUMMY2, DUMWY3) \
M__| NPLEMENT | NT64_CASE(CLASS_NAMVE, SW TCH CODE, DUMMY1, DUMMY2, DUMWY3) \
M__| NPLEMVENT _DOUBLE_CASE(CLASS_NAMVE, SW TCH CODE, DUMMY1, DUMMY2, DUMWY3) \
M__| NPLEMENT _COMPLEX_CASES(CLASS_NANE, SW TCH CODE, DUMMY1, DUMW2, DUMWY3)

M.__CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS_1_W TH_CUSTOM SW TCH_CPP
(Cal cTest, M._I MPLENVENT_LARGE_AND COMPLEX_CASES);

tenpl ate <typenane DATATYPE>
voi d Nor mal Mbdul e: : cal cul at eQut put Subl nage(TSubl nage<DATATYPE> * out Subl ng,
int outl ndex,
TSubl mage<DATATYPE> *inSublnmg){ ... }

145

Registered Voxel Data Types

7.5.4. Configuration of Supported Voxel Types

There are some advanced options you can use when you activate the support of your ML module for
registered data types.

set Voxel Dat aTypeSupport (ONLY_DEFAULT_TYPE) lets the module work with the default type set
supported by macros like M._CALCULATEQUTPUTSUBI MAGE_NUM | NPUTS 1 _DEFAULT_TYPES_CPP. So
if you use a module macro with DEFAULT in its name, use this value.

set Voxel Dat aTypeSupport (ONLY_SCALAR TYPES) is the default setting which causes the ML to
deactivate all modules outputs if any of the voxel data is of non-scalar type. This stops a module
from operating on non-scalar data types, so that a module programmer does not have to care about
them at all.

set Voxel Dat aTypeSupport (ALL_REG STERED_TYPES) is the mode to have the module work with all
registered voxel types which do not provide all operations of a standard type.

Note
&
A module can always restrict the types it supports in the

cal cul at eQut put | nageProperti es method by setting an output to invalid if a type
combination is not supported.

This mode is useful for modules which handle or just pass voxel data, but do not calculate explicit
output values, like for example a Subl mage module. It is also useful for modules which support types
other than the scalar types when they are not using the module macro for the default type set, e.g.
when a module is implemented through typed output handlers.

146

Registered Voxel Data Types

7.5.5. Implementing a New Voxel Data Type by
Deriving from MLTypelnfos

You can register your own voxel data type. A structure that describes the data type, its properties and a
function table with its operations can be registered in the ML to activate a new type. Modules that perform
generic operations that use the registered type structures (directly or indirectly) will automatically work
with this new type.

There are some steps to take and many functions to implement, but generally it is not really
difficult and does not involve as much work as one might think. The easiest way is to use the
M.TypeAddExanpl el nf os example as a template for integrating a new type; this way you will not forget
any important steps. See MLTypeAddExample for detailed information.

1. Take an M.Typel nf os structure from nl TypeDefs. h .
2. Set all function pointers in that structure to functions that implement your data type operations.

3. Initialize your M_.Typel nf os (Section 7.5.5.1, “Describing a New Voxel Type with MLTypelnfos”)
(see nl TypeDefs. h) by using M. Typel nfoslnit() (see nl DataTypes.h).

4. Create one instance of your initialized M_Typel nf os and register it on library initialization by using
M_Regi st er Typel nf os() from nl Dat aTypes. h.

The result of your implementation should be an initialized M_.Typel nf os structure that describes all
data type properties, features and operations (see Section 7.5.5.1, “Describing a New Voxel Type with
MLTypelnfos”). Take a closer look at this structure now.

7.5.5.1. Describing a New Voxel Type with MLTypelnfos

The M_Typel nf os structure describes all features, properties and operations of a data type. It contains
all data type features and pointers to all functions needed to implement generic operations on the data
type. It is a wrapper for any information and code needed for any standard or user-defined data type
the ML uses. The descriptions of the scalar ML data types are implemented in .

The descriptive components of the M.Typel nf os structure are permanent and non-changing values
requested by many operations that need data type information. Most of these values can be initialized
with the function M_.Typel nfosl nit () which also performs checks for valid data type initialization
and calculates the more difficult components of the M_Typel nf os structure. All other stuff (i.e., the
function pointers) should be initialized by using the macro M._TYPE_ASSI GN_FUNCTI ON_PQl NTERS() as
explained in the example in Section 7.5.5.2, “The MLTypeAddExample”.

1. size_t nunConps

Number of components of this data type. Equals number of characters in *struct I nfoStri ng.
A scalar value has 1 component, complex numbers have 2 components, and ML vectors have 6
components (see Section 2.4.1, “| mageVect or, ImageVector” for details) Each component must
be a scalar object as described in number 13 [148].

2. size_t typeSize
The si zeof of the registered data type, i.e., its size in bytes.
3. const char *nane

The pointer to a null-terminated character string that gives the data type name. It should contain
alphanumeric characters only.

4. M.Dat aType rangeAndPreci si onEqui val ent

Returns a standard data type which has a comparable range and precision behavior.

147

Registered Voxel Data Types

10.

11.

12.

13.

14,

doubl e dbl M n

Double minimum of data type.

doubl e dbl Max

Double maximum of data type.

const M.TypeData *typeM nPtr

Minimum value of the data type.

const M.TypeData *typeMaxPtr

Maximum value of the data type.

const M.TypeData *typeDefaul tPtr

The default value of the data type, comparable to zero.
si ze_t nunGoodCast Tos

Number of data types to which this type can be cast without information or functionality loss.
const char **goodCast Tos

Pointer to a table of a null-terminated string of data type names to which this type can be cast
without information or functionality loss.

unsi gned int compOf f set s[M._MAX_COVPONENTS_EXTENDED_TYPE]

Table of byte offsets from the first component to other components to directly address any
component with a character pointer. e.g., if a data type consists of a float, a char and another float
component where si zeof (f1 oat) is 4 and si zeof (char) is 1, the first table entry must be 0, the
second entry must be 4, and the third entry must be 5.

const char *structlnfoString

Pointer to a null-terminated string that describes the type configuration as explained for the
typeSt ruct I nf o parameter of the function M.Typel nfol ni t .

int dataTypeld

The M.Dat aType id of the registered type. This should be a constant value. If you want to define
your own types you should contact the MeVisLab team to get your own id range assigned.

The operative components of the M. Typel nf os structure are function pointers which are called when
operations on a registered data type are needed. We will forgo the opportunity to list all functions here,
simply refer to the definition of M.Typel nfos in nl TypeDefs. h for the required functions.

Many operations can simply be implemented by using convenience functions which are already
implemented in the ML, e.g. to cast one extended data type to another.

The parameters of these functions are often pointers of type M_TypeDat a to instances of the data type;
the parameters need to be cast to be able to work on the correct data type.

The M.Typel nfoslnit() function checks for valid data type initialization, and calculates the more
difficult components of the M_.Typel nf os structure. It returns 1(=true) on success, 0(=fal se) on
failure.

Please refer to the MLTypeAddExanpl e example on how exactly to register your own type.

148

Registered Voxel Data Types

7.5.5.2. The MLTypeAddExample

The following example shows how to implement a new voxel type. The example does not implement
all functions in order to keep the example short. However, the implementation of most functions should
not be a problem when you look at similar functions for reference.

‘ Note
e Many functions are implemented by using ML functions; they typically implement the
desired operation for each components of the new data type. Thus, especially vector
operations can often be implemented easily. See the header file documentation of those
functions for detailed descriptions.

» Most functions get pointers to the data instances by const M.TypeDat a or M. TypeDat a
pointers. This is necessary because the functions are defined generically and don't know
the real type. Thus, many casts of those pointers are needed before the actual type
operations can be applied.

» Do not change the function names because it is exactly these names that are used
in the M__TYPE_ASSI GN_FUNCTI ON_PQO NTERS() macros to set the members in the
M.Typel nf os structure. Thus, missing functions will also be detected which makes sure
that no function is forgotten.

The initialization of the new voxel data type, typically to be implemented in the library initialization file:

Example 7.9. M_Regi st er Typel nf os

/]! Create static instances of all data types to be used in the M.
/1! These instances will directly be registered as new M. data types.
stati c M.TypeAddExanpl el nf os _M_NewType;

int initResult = MRegisterTypel nfos(& M_-NewType) ;

return initResult;

The implementation of the M_.TypeAddExanpl el nf os class which is used to create the registered
instance in the library initialization file:

Example 7.10. How to Add Your Own Voxel Data Type

This example is outdated. Please refer to the example code provided with the MeVisLab SDK for the
current version.

#i fndef __nml MLQui deTypeAddExanpl el nf os_H
#define __nm M.Qui deTypeAddExanpl el nf os_H

/1 M.-includes

#i fndef _ M.TypeAddExanpl eSyst em H
#i ncl ude "M.TypeAddExanpl eSyst em h"
#endi f

#i fndef __nl Dat aTypes_H

#i ncl ude "nl Dat aTypes. h"

#endi f

#ifndef __ mUils_H

#include "m Utils. h"

#endi f

M__START_NAVMESPACE
/1! The data type to be inplenented as a new voxel data type.
/1! For sinplification we register a new type which does the

/1! sane as the nornmal M.doubl e type.
typedef M.doubl e NewVType;

cl ass M__NEW VTYPEEXTENSI ON_EXPORT M.TypeAddExanpl el nfos : public MTypel nfos {

pr ot ect ed:

149

Registered Voxel Data Types

/1! Reference to a permanently existing constant instance of NewWType containing the
/1! m ni num data type val ue.
static const NewType & typeM n() { static NewType v=-DBL_MAX; return v; }

/1! Reference to a pernmanently existing constant instance of NewVType containing the
/1! maxi mum data type val ue.
static const NewType & typeMax() { static NewType v=DBL_MAX; return v; }

/1! Reference to a permanently existing constant instance of NewVType containing the
/1! default data type val ue.
static const NewType & typeDefault(){ static NewType v=0; return v; }

/1! Permanent instance of a pointer to the typelnfos used by this class. It
/1" will often be used as a kind of this pointer for the static instance of
/1! this data type infornation.

stati c M.Typel nfos *_nyl nf os;

/1! Nunmber of instances of this class. Only used to avoid that nore than one
/1! instance is created.
static size_t _numl nstances;

public:
/1! Constructor. It initializes
/1!t - all data type operations by setting pointers of a
/1! function table to the data type operations (inplenented
/1! as static functions) by using the nmacro
/1! M._TYPE_ASSI GN_FUNCTI ON_PO NTERS() ;
/1t - all other data type properties, |ike mn/max/default values (as
/1! M.doubl e and as type val ues) by using the function MTypelnfoslnit(),
/1" - it checks for at npbst one instance of this class.

M.TypeAddExanpl el nf os()
{

/1 W pernmit only one instance since nobst class settings are static constant.
if (_num nstances > 0){
m Error (" M.TypeAddExanpl el nf os", M._PROGRAMM NG_ERROR)
<< "Too many instances of M.TypeAddExanpl el nfos created.";
}

_nuni nst ances++;

I/ Store pointer to this. W only have one instance. So we sinulate a kind
/1 "this" pointer for this static instance.
_nylnfos = this;

/1l Assign all pointers to the static functions inplenenting the operations.
/1 The function nanes have predefined nanes beginning with "M.TYPE_" (see
/1 function inplenentation bel ow).

M__TYPE_ASSI GN_FUNCTI ON_PO NTERS() ;

/1 Specify all type nanes and their nunber to which this type can be cast
/1 without information |oss.

si ze_t numCGoodCast Tos = 1;

static const char *goodCastTos[] = { "NewType" };

/1 Initialize the new M.Typel nfos struct. For a paraneter description see
/1 discussion of M.Typelnfos structure or the type docunentation in the
/1 m TypeDefs.h file.
NewVType buf;
voi d *addr[1];
addr[0] = &buf;
M.Typel nfoslnit(this,
si zeof (NewWType) ,
"NewType",
- DBL_MAX,
DBL_ MAX,
(M.TypeDat a*) (& typeM n()),
(M.TypeDat a*) (& _t ypeMax()),
(M. TypeDat a*) (& typeDefaul t()),
"l
fal se,
M.doubl eType,
addr ,
nunGoodCast Tos,
goodCast Tos
E
}
/1! Return value as string to be freed by MFree().
/1! Use M.TypeConponentsToString() if possible.
static char *M.TYPE get Stri ngVal ue(const M.TypeData *p)
{ return M.TypeConponent sToStri ng(_nylnfos, p); }

/1! Convert string s to value and wite result into r.

150

Registered Voxel Data Types

/1! Use M.TypeConponent sFronBtring() if possible.
static void M.TYPE_ set StringVal ue(const char *s, MTypeData *r)
{ M.TypeConponent sFrontri ng(_nylnfos, s, (MTypeData*)& _typeDefault()), r); }

/1 1 MPLEMENT M NI MUM MAXI MUM DEFAULT AND COPY OPERATI ONS.
/1! Sets p to m ni num val ue. Must be inpl enent ed.

static void M.TYPE_set ToM ni mrum(M.TypeDat a *p)

{ mencpy(p, & typeMn(), sizeof(NewType)); }

/1! Sets p to m ni num val ue. Must be inpl enent ed.
static void M.TYPE_set ToMaxi mum(MLTypeDat a *p)
{ mencpy(p, & typeMax(), sizeof(NewVvType)); }

/1! Sets p to default value. Must be inpl enented.
static void M.TYPE set ToDef aul t (M_.TypeData *p)
{ mencpy(p, & typeDefault(), sizeof(NewType)); }

/1! Copy paraneter p to second q.
static void M.TYPE copy(const M.TypeData *p, M.TypeData *q)
{ mencpy(q, p, sizeof(NewType)); }

/1 | MPLEMENT CAST OPERATI ONS FROM THE NEW TYPE TO BOOL/ | NT/ DOUBLE/ OTHER TYPE.
/1! Return paraneter p cast to bool. Typically false when it is identical to
/1! the default element, otherw se true.

static M.CTBool M.TYPE_cast ToBool (const M.TypeData *p)

{ return (*((NewType*)p)) != _typeDefault(); }

//! Return paraneter p cast to integer. Oten inplenmented as
/1! the integer cast of the first conponent.

static M.CTInt MTYPE_cast Tol nt (const M.TypeData *p)

{ return (MCTInt)(*((NewType*)p)); }

/1! Return paraneter p cast to Mdouble. O ten inplenented as
/1! the integer cast of the first conponent.

static M.doubl e MLTYPE_cast ToDoubl e(const M.TypeData *p)

{ return (Mdouble)(*((NewWType*)p)); }

/1! Cast nyData to otherData who has type infos otherlnfos. Usually
/1! inplemented by default with function casting conponentwi se.
static void M.TYPE_cast ToQt her Type(const M.TypeData *myDat a,
const M.Typel nfos *ot her| nfos,
M.TypeDat a *ot her Dat a)
{ M.TypeCast ToQ her Type(_nyl nfos, nyData, otherlnfos, otherData); }

/1 1 MPLEMENT CAST OPERATI ONS FROM | NT/ DOUBLE/ OTHER TYPE TO THE NEW TYPE.
/1! Cast first paraneters to data type and wite it into second paraneter.
static void M.TYPE cast From nt (MLCTInt p, MTypeData *q)

{ *((NewType*)q) = (NewType)p; }

/1! Cast first paraneters to data type and wite it into second paraneter.
static void ML.TYPE_cast FronDoubl e(M_doubl e p, M.TypeData *q)
{ *((NewType*)q) = (NewType)p; }

/1! Cast first paraneters to data type and wite it into second paraneter.
static void M.TYPE_cast From her Type(const M.Typel nf os *ot her | nf os,
const M.TypeData *ot herDat a,
M.TypeDat a *nyDat a)
{ M.TypeCast ToOQ her Type(ot her I nf os, ot herData, _nylnfos, nyData); }

stati c M.CTBool M.TYPE_i sEqual ToType(const M.TypeData *p, const M.TypeData *q)
{ return (*((NewType*)p)) == (*((NewType*)q)); }

/1 | MPLEMENT SOVE SPECI AL FUNCTI ONS

/1! Negate the val ue.

static void M.TYPE_negate(const MTypeData *p, MTypeData *q)
{ *((NewType*)q) = -(*((NewType*)p)); }

/1! Normalize type.
static void M.TYPE_nornalize (const M.TypeData * /*p*/, MTypeData *q)
{ *((NewType*)q) = (NewvType)(1); }

/1 1 MPLEMENT MULTI PLI CATI ON FUNCTI ONS. THE RESULT | S WRI TTEN ALWAYS | NTO LAST
/1 FUNCTI ON PARAMETER R

/1! Inplement nultiplication with integer. Result witten into paraneter three.
static void MLTYPE nmul t Wt hlnt(const M. TypeData *p, M.CTInt g, M.TypeData *r)

{ *((NewType*)r) = (*((NewType*)p)) * (NewType)q; }

/1! Inplement nultiplication with double. Result witten into paraneter three.
static void M.TYPE_nul t Wt hDoubl e(const M.TypeData *p, M.double g, M. TypeData *r)
{ *((NewType*)r) = (*((NewType*)p)) * (NewType)q; }

/1! Inplement nultiplication with its own type. Result witten into paraneter three.
static void M.TYPE nmul t Wt hType(const M.TypeData *p, const M.TypeData *q, M.TypeData *r)

151

Registered Voxel Data Types

{ *((NewType*)r) = (*((NewType*)p)) * (*((NewType*)q)); }

/1! Inplement multiplication with another type. Result witten into paraneter three.
static void M.TYPE_mul t WthQt her Type(const M.Typel nfos *ot her | nf os,

const M.TypeData *ot herDat a,

const M.TypeData *nyDat a,

M.TypeDat a *r)
{ M.TypeMul t Wt hCt her Type(_nyl nfos, nyData, otherlnfos, otherData, r); }

/1! | MPLEMENT ADDI TI ONS. SEE MULTI PLI CATI ON FUNCTI ONS FOR SI M LAR CCDE.
static void MTYPE_pl uslnt (const M.TypeData *p, M.CTInt g, MTypeData *r) { /*...*/ }
static void MTYPE_pl usDoubl e(const M.-TypeData *p, M.double g, MTypeData *r) { /*...*/ }

static void M.TYPE_plusType (const M.TypeData *p, const MTypeData *q, MTypeData *r) { /*..

*)

152

Chapter 8. Base Objects

Chapter Objectives

This chapter contains all the information you need to implement persistence to non-module classes
in the ML. Many modules and classes provide special functionality to handle objects derived from the
class Base or TreeNode so that they can often handle objects they do not even know explicitly (see
Section 8.1, “Base Objects” and Section 8.3, “Creating Trees from Base Objects Using TreeNodes”).

This chapter explains how

to derive your own objects from Base,

these objects can be stored and retrieved in/from trees (e.g. as XML or RawNode trees) with Tr eeNode
(see Section 8.3, “Creating Trees from Base Objects Using TreeNodes”).

they can be written to or read from an Abst r act Per si st enceSt r eam (see Section 8.4, “Writing/
Reading Base Objects to/from AbstractPersistenceStream”). This mechanism is intended to replace
the Tr eeNode persistence completely in the future.

they can be (de)composed with other Base objects to larger structures and

they can be stored and retrieved in files by using already existing ML modules dedicated to that.

See Section 2.1.2.3, “Base _Field” for information on how to derive your own class from Base and how
to transfer Base objects between modules.

153

Base Objects

8.1. Base Objects

When you want to include a new class to the ML that is not an ML module (e.g., to pass additional image
or segmentation information from one module to another), the Base persistence mechanism of the ML
should be used. It permits saving and storing objects, passing objects from one module to another
BaseFi el d or simply getting and setting their state via strings. This class represents general ML objects
that support import/export via strings (set Per si st ent St at e() /per si st ent St at e()) or arbitrary tree
structures (using addSt at eToTree() and r eadSt at eFr onilr ee()) or through a specialized input/output
stream (using wri t eTo() and r eadFr on()). It has to be the base class for all objects passed from one
BaseFi el d to another (see Section 2.1.2, “Fi el d”).

‘ Note
This class is the base class for the class Modul e and all derived modules.

« It can be represented by using the field concept (class BaseFi el d)

« It provides an interface to allow for the import/export of a persistent representation of an object's
internal state.

8.2. Composing, Storing and Retrieving Base
Objects

Base objects can be composed and decomposed to lists of type BaselLi st . This functionality is provided
by the modules ConposeBaseLi st and DeconposeBaseli st . See the documentation of these modules
for detalils.

Base objects that support the Tr eeNode persistence mechanism can be stored and restored using the
SaveBase and LoadBase modules.

8.3. Creating Trees from Base Objects Using
TreeNodes

To create a class of Base objects that supports persistence and that can be stored and restored using the
SaveBase and LoadBase modules (see Section 8.2, “Composing, Storing and Retrieving Base Objects”),
the following steps need to be taken:

» Derive your custom class from Base or another class derived from Base (Section 2.1.2.3, “Base Field”

)-

e Include m TreeNode. h in your header file.

e Overwrite the virtual methods addSt at eToTree() and r eadSt at eFr onilr ee() .

e Assign a version number to your class by using the macro
M._SET_ADDSTATE_VERSI ON(Ver si onNunber) in your public class header.

» Add the M._CLASS HEADER(Cl assNane) macro in the header.
e Add the M._CLASS SOURCE(Cl assNanme, Super C assNane) macro in the cpp.
e Call Yourd ass: :initd ass() inthe project's init.cpp file.

The following example shows how to implement persistence to a simple class Segnent edObj ect. The
class Segnent edQoj ect is derived from Basel t emwhich is derived from Base:

154

Base Objects

Base (abstract class, no nenbers)

Basel t em (nane, id)

|
Segnent edObj ect (obj ect GrayVal ue, voxel Count, boundi ngBox)

Example 8.1. How to Implement Persistence for Base Objects

Header file of a class Segnent edObj ect :

cl ass Segment edChj ect : public Baseltem {

public:
/1! I nplenment export functionality (as used by the SaveBase nodul e):
virtual void addStateToTree(TreeNode* parent) const;

/1 Set current version nunber
M._SET_ADDSTATE_VERSI O\(1) ;

/1! Inplenment inport functionality (as used by the LoadBase nodul e):
virtual void readStateFroniree(TreeNode* parent);

private:
/1" M runtine systemrel ated stuff
M._CLASS_ HEADER(Segnent edObj ect) ;

/1 Menbers to be (re-)stored:
/1! The identifying gray value of this object
I ong _obj ect GrayVal ue;

/1! Nunber of voxels
I ong _voxel Count;

/1! Boundi ng box respective to original inage
Subl mageBox* _boundi ngBox;

}

Source file of class Segnent edObj ect :

Adding the state to the tree:

/1! Inplenment export functionality:
voi d Segnent edObj ect : : addSt at eToTr ee(Tr eeNode* parent) const
{
/1 Wite version nunber (as set in the header)
M.__ADDSTATE_VERSI ON(Segnent edQbj ect) ;

/1 Add supercl ass nenbers:
M._ADDSTATE_SUPER(Basel t en) ;

/1 Add this class' menbers:
par ent - >addChi | d(_obj ect GrayVal ue, "Obj ect GrayVal ue");
par ent - >addChi | d(_voxel Count, "“Voxel Count");

/1 The boundi ng box is optional, do not wite if the pointer is NULL:
i f (_boundi ngBox) { parent->addChild(*_boundi ngBox, "Boundi ngBox"); }

}

Reading the state from the tree:

/1! 1 nplenment inport functionality:
voi d Segnent edObj ect : : r eadSt at eFr oniTr ee(Tr eeNode* par ent)
{

/'l Read version nunber

int version = parent->get Version("Segnent edCbj ect");

/! Read super class nenbers:
M._READSTATE_SUPER(Basel t en) ;

/1 Handl e version differences:
/1 In this exanple, version O used a different tag for _objectG ayVal ue
/1 and did not wite the Voxel Count val ue.
switch (version) {
case 0 :
/! Read object gray value fromold tag nane

155

Base Objects

}

par ent - >r eadChi | d(_obj ect GrayVal ue, "GrayVal ue");
br eak;

case 1 :
par ent - >r eadChi | d(_obj ect GrayVal ue, "Obj ect GrayVal ue");
br eak;

defaul t:
/1 Throw exception: A version upgrade was perforned without adapting the version handling
t hrow Tr eeNodeExcept i on(TNE_Unsuppor t edd assVer si on) ;

}

/1 Handl e this version difference (voxel Count avail able or not)
/1 by calling the macro M._READCHI LD _OPTI ONAL whi ch sets

/'l the given variable to a default value (third paraneter)

/'l in case the tag "Voxel Count" was not found.

M._READCHI LD_OPTI ONAL(_voxel Count, "Voxel Count", 0);

/1 Boundi ng box is optional:
/] However, M._READCH LD OPTIONAL is not designed for objects references,
/1 hence we have to handle the case nanually:
if (!_boundingBox) { M._CHECK _NEW _boundi ngBox, new Subl mageBox()); }
try {
par ent - >r eadChi | d(*_boundi ngBox, "BB");
}

catch (const TreeNodeException& e) {
/1 Some ot her exception? Pass problemto caller.
if (e.getCode() != TNE_ChildNot Found) { throw, }

/1 No, a Child Not Found exception occurred, we handle it manual ly:
M._DELETE(_boundi ngBox) ;
}

Registering the class in the runtime type system:

M__CLASS_SOURCE(Segnent edObj ect, Baseltemn)

8.4. Writing/Reading Base Objects to/from
AbstractPersistenceStream

To create a class of Base objects that supports persistence and that can be stored and restored using the
SaveBase and LoadBase modules (see Section 8.2, “Composing, Storing and Retrieving Base Objects”),
the following steps can be taken (this is an alternative to the Tr eeNode persistence mechanism):

Derive your custom class from Base or another class derived from Base (_Section 2.1.2.3, “Base Field”

).

Include m Abstract Persi stenceStream h inyour header file.

Overwrite the virtual methods wri t eTo() and r eadFron() .

Overwrite the virtual method i npl enent sPer si st ence() to return true for the persistence interface(s)
that you implement. This is a new requirement so that other instances can decide which persistence
interface to use.

Assign a version number to your class by using the macro
M._SET_ADDSTATE_VERSI ON(Ver si onNunber) in your public class header.

This is the same as in the Tr eeNode interface
Add the M._CLASS HEADER(Cl assNane) macro in the header.
Add the M_L_CLASS_SOURCE(Cl assNane, Super d assNane) macro in the cpp.

Call Your d ass: :initd ass() inthe project's init.cpp file.

The following example shows how to implement persistence to a simple class Segnent edObj ect . The
class Segnent edhj ect is derived from Basel t emwhich is derived from Base:

Base (abstract class, no nenbers)

156

Base Objects

Basel tem (nane, id)

Segnent edObj ect (obj ect GrayVal ue, voxel Count, boundi ngBox)

Example 8.2. How to Implement Persistence for Base Objects

Header file of a class Segnent edObj ect :

cl ass Segment edChj ect : public Baseltem {

public:
/1! announce supported persistence interfaces
virtual bool inplenentsPersistence(Persistencelnterface iface) const

{
}

return (iface == PersistenceByStrean);

/1! Inplenment export functionality (as used by the SaveBase nodul e):
virtual void witeTo(Abstract PersistenceCutput Streant strean) const;

/1 Set current version nunber
M._SET_ADDSTATE_VERSI O\(1) ;

/1! Inplenment inport functionality (as used by the LoadBase nodul e):
virtual void readFron{Abstract Persistencel nput Streant stream int version);

private:
/1" M runtine systemrelated stuff
M._CLASS_ HEADER(Segnent edObj ect) ;

/1l Menbers to be (re-)stored:
/1! The identifying gray value of this object
I ong _obj ect GrayVal ue;

/1! Nunber of voxels
I ong _voxel Count;

/1! Boundi ng box respective to original inage
Subl mageBox* _boundi ngBox;

}

Source file of class Segnent edObj ect :

Writing the object state to the stream:

/1! Inplenment export functionality:
voi d Segnent edCbj ect::writeTo(Abstract Persi stenceCut put Streant strean) const
{

/1 Add supercl ass nenbers:

M__WRI TETO_SUPER(Basel tem stream;

/1 Add this class' nenbers:
stream >wite(_obj ect GrayVal ue, "Object G ayVal ue");
stream >wite(_voxel Count, "Voxel Count");

/1 The boundi ng box is optional, do not wite if the pointer is NULL:
i f (_boundi ngBox) {
/] start a new sub-structure
stream >start Struct (" Boundi ngBox") ;
stream >w i t e(_boundi ngBox->v1, "v1");
stream >w i t e(_boundi ngBox->v2, "v2");
stream >endStruct () ;
}
}

Reading the object state from the stream:

/1! 1 nplenment inport functionality:
voi d Segnent edObj ect : : r eadFr on{ Abst r act Per si st encel nput Streant stream int version)

/! Read super class nenbers:
M._READFROM SUPER(Basel tem strean);

/1 Handl e version differences:

157

Base Objects

/1 In this exanple, version O used a different tag for _objectG ayVal ue
/1 and did not wite the Voxel Count val ue.
switch (version) {
case 0 :
/! Read object gray value fromold tag nane
par ent - >r ead(_obj ect GrayVal ue, "G ayVal ue");
br eak;
case 1 :
par ent - >r ead(_obj ect GrayVal ue, "Obj ect GrayVal ue");
br eak;
defaul t:
/1 Throw exception: A version upgrade was perforned without adapting the version handling
/! Note that this exception only needs to be thrown if you want to be on the safe side.
/'l The persistence framework outputs a warning on its own if a newer version than that
/1 from M._SET_ADDSTATE_VERSI ON i s encount er ed.
t hr ow Per si st enceSt r eanfor mat Except i on(" Unsupported versi on");

}

/1 Handl e version difference (voxel Count avail able or not)
/1 by calling the macro readOptional which sets

/'l the given variable to a default value (second paraneter)
/'l in case the tag "Voxel Count" was not found.

stream >r eadOpt i onal (_voxel Count, 0, "Voxel Count");

/1 Boundi ng box is optional:
/] However, startStruct can not be called optionally,
/'l hence we have to check beforehand if there is an elenment with the correct name:
if (stream >i sNext|nStruct("Boundi ngBox")) {
try {
M._CHECK_NEW _boundi ngBox, new Subl mageBox());
stream >start Struct (" Boundi ngBox") ;
stream >r ead(_boundi ngBox->v1, "v1");
stream >r ead(_boundi ngBox->v2, "v2");
stream >endSt ruct ()
}
catch (const PersistenceStreanExcepti on& e) {
/1 make sure to del ete boundi ng box again:
M__DELETE(_boundi ngBox) ;
/'l re-throw exception
t hr ow;
}
}
}

Registering the class in the runtime type system:

M__CLASS_SOURCE(Segnent edObj ect, Baseltem)

158

Chapter 9. Unicode Support

Chapter Objectives

This chapter describes features and limitations of the ML with regard to international character handling.

9.1. Unicode Support

Unicodes must be supported to handle international characters in character strings such as parameters
or file names. The ML implements support of the so-called UTF8 unicodes and provides some functions
for managing or recoding these UTF8 unicodes. Thus, all strings (especially field names) the ML handles
may contain unicoded characters.

Important

All obtained strings from e.g., module fields or other ML sources may contain unicoded
characters.

Strings (e.g., file names) must be handled with 1/O functions that are both capable of dealing
with unicode and platform-independent.

See Section 2.6.2, “* MUWilities ” and Chapter 10, File System Support for more
information on helper functions for the platform-independent implementation of unicode-
related stuff.

Note

When you receive other unicoded strings (e.g., from user interfaces, other libraries or from
string files), these strings might use other uni-codings. See m Uni code. h for information
on how to convert these strings to UTF8.

The following functions are available:

1. Muint16* M.Convert UTF8ToUTF16(const char* input)

Converts the given input char string (UTF8, terminated by 0) to UTF16, returns a newly allocated
string that must be freed with M_Fr ee() , returns NULL on error.

2. M.uint32* M.Convert UTF8ToUTF32(const char* input)

Converts the given input char string (UTF8, terminated by 0) to UTF32, returns a newly allocated
string that must be freed with MLFr ee() , returns NULL on error.

3. char* M.Convert UTF16ToUTF8(const M.ui nt 16* i nput)

Converts the given input wide string (UTF16, terminated by 0) to UTF8, returns a newly allocated
wide string that must be freed with MLFr ee(), returns NULL on error.

4. char* M.ConvertUTF8ToLati nl(const char* input)

Converts the given UTF8 encoded string into a Latinl string, converting all non-Latinl chars to '?",
the returned string must be freed with MLFr ee(), returns NULL on error.

5. char* M.Convert UTF16ToLati n1(const M.ui nt 16* input)

Converts the given UTF16 encoded wide string into a Latinl string, converting all non-Latinl chars
to '?', the returned string must be freed with M_Fr ee() , returns NULL on error.

159

Unicode Support

char* M.ConvertlLati nlToUTF8(const char* input)

Converts the given Latinl encoded string into a UTF8 string, the returned string must be freed with
M_Fr ee(), returns NULL on error.

M_ui nt 16* M.Convert Lati n1ToUTF16(const char* input)

Converts the given Latinl encoded string into a UTF16 wide string, the returned string must be
freed with MLFr ee() , returns NULL on error.

160

Chapter 10. File System Support

Chapter Objectives

This chapter describes features and limitations of the ML with regard to managing platform-independent
file (system) accesses with file names that contain international characters.

10.1. File System

Opening, reading, writing, manipulating and closing files is generally not platform-dependent; however,
the way of coding file names to manage international characters is. The ML provides a set of functions
to prevent file management from becoming difficult or from getting platform-dependent.

Generally, you should use these functions when you are not sure if the file names are unicoded or not.
Examples:

1. When you receive file names from string fields of ML modules, you need to handle them as UTF8-
coded strings, and files need to be managed by using the functions provided by m Fi | eSystem h .

2. When you have file names containing only ASCII characters, you can use the normal file functions
offered by the system. However, it also possible to use the functions provided by m Fi | eSystem h
; it makes your code more flexible concerning later changes to unicoded strings.

The following functions are available:
1. FILE *Mfopen(const char *fileNanme, const char *node)

Opens the file fi | eName with the access mode node, returns a FI LE pointer or NULL on failure.
This method is equivalent to the st di o f open implementation, see the f open documentation for

available mode flags ("r","w","a", etc.). In contrast to the original f open function, this method accepts
an UTF-8 encoded string and uses the unicode WIN32 APl on Windows. On Linux, this method
maps to open directly.

2. int Mopen(const char *fileNane, int openFlags, int pMde)

Opens the file with name fi | eNane with the given openFl ags, returns a file descriptor or -1 on
error. This function is equivalent to the stdio open implementation, see the open documentation
for available open flags. In contrast to the original open method, this method accepts an UTF-8
encoded string and uses the unicode WIN32 API on Windows. On Unix systems, this method maps
to open directly. pMbde specifies the access permissions of the opened file.

3. int MFileExists(const char *fil eNane)

Returns 1 if the file with the UTF8 coded name fi | eNane exists, O otherwise.
4. int MFilelsReadabl e(const char *fil eNane)

Returns 1 if the file with the UTF8 coded name fi | eName exists and is readable, O otherwise.
5. int MFilelsWitable(const char *fil eNane)

Returns 1 if the file with the UTF8 coded name fi | eNane exists and is writable, 0 otherwise.
6. int MFileWiteString(const char *fileNane, const char* data)

Creates/overwrites the file with the UTF8 coded name f i | eName with the null terminated given data
string dat a and returns 1 on success or 0 on error.

7. int MFileAppendStringData(const char *fileNane, const char* data)

161

File System Support

Appends the null terminated data string dat a to the file with the UTF8 coded name fi | eNane
(creating a new file if it does not exist), returns 1 on success and 0 on error.

char* M.Fil eReadAl | AsString(const char *fil eNane)

Reads the complete file with UTF8 coded name fil eNane and returns its content as a null-
terminated string or returns NULL on error. The returned memory needs to be deallocated by calling
M.Free().

M_ui nt 8* M_Fi | eReadAl | AsBi nary(const char *fil eNane)

Reads the complete file with UTF8 coded name fi | eNane and returns its content as binary data
or returns NULL on error. The returned memory needs to be deallocated by calling M_Fr ee() .

There are a number of additional functions available, see nl Fil eSystem h for details:

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M_Er r or Code M.fcl ose(FILE *file);

MLEr r or Code M.renove(const char *fil eNane);

MLEr r or Code M.renane(const char *ol dName, const char *newNane);

MLEr r or Code M.cl ose(int fd);

MLEr r or Code M.Del et eFil e(const char *fil eNane);

char* M.Get NonExi sti ngRandonti | eNane(const char *prefix);

M_Error Code M.FileWiteStringData(const char *fil eNane, const char *str);

M_Error Code M.Fil eWiteBi naryData(const char *fileNanme, const Muint8 *data,
unsi gned int |en);

M.Error Code M.Fi |l eWiteBinaryDataAt(int fileDesc, Mint startPos, const Muint8
*data, unsigned int |en);

MLEr r or Code M.Fi | eAppendStri ngDat a(const char *fil eNane, const char *strData);

M_Er r or Code M_Fi | eAppendBi naryDat a(const char *fileNane, const Muint8 *data,
unsi gned int |en);

MLError Code ML_Fi | eAppendBi naryDat aWt hDescriptor(int fileDesc, const Muint8
*data, unsigned int |en);

char* M.Fi | eReadChunkAsString(const char *fileName, Muint startPos, M.uint
nunByt es) ;

M_ui nt 8¢ M_Fi | eReadChunkAsBi nary(const char *fileName, Muint startPos, Muint
nunmByt es) ;

M_ui nt 8* ML_Fi | eReadChunkAsBi nar yFronDesc(int fileDesc, Muint startPos, M.uint
nunByt es) ;

char* M.Fi | eReadChunkAsStri ngFronDesc(int fileDesc, Muint startPos, M.uint
nunmByt es) ;

M.int MFil eGetSi zeFronDescriptor(int fd);
M.i nt M.Fi | eGet Si zeFr omNane(const char *fil eNane);

M.int MFil eSet BytePos(int fd, M.int pos);

162

File System Support

See also Section 2.6.2,“M Ui li ti es ”and Chapter 9, Unicode Support for more information on helper
functions for the platform-independent implementation of file-system-related functions.

163

Appendix A. Basics about ML
Programming and Projects

Objectives of This Appendix

This appendix will provide further information that is needed for ML programming even though it is not
directly related to it.

164

Basics about ML
Programming and Projects

A.l. Creating an ML Project by Using
MeVisLab

The development version of MeVisLab fully supports easy creation of running ML projects for
developers:

» Gotothe File menu of the MeVisLab application and select Run Module Wizard . See corresponding
chapter in the document Getting Started.

» Select I nvent or, Macro Modul e, M. or Load Setti ng to create

e C++ and project code for an Inventor node for 2D/3D visualization. See also the Open Inventor™
Toolmaker book which describes how you implement your own visualization node.

« MDL (module description language) and Python code for a MeVisLab macro.
« C++ code and project files for an ML image processing module.
 or if you want to load project settings of a project you previously created.

» Follow the instructions and fill in parameters as shown in the module wizard.

» See the MeVisLab SDK (Software Development Kit) for additional information on project and software
development in MeVisLab.

The wizard will open the directories where files have been created.

If you work with Visual C++™, you can open the project file <ProjectName>.vcxproj and compile the
project.

If you work with Linux, you can compile the project with the created makefile.
If you work with Mac OS X, you can open and compile the project with the <ProjectName>.xcodeproj.

Then you can start MeVisLab and look for your module in the menu entries or the MeVisLab Module
search.

Have a close look at the comments within the source code to get familiar with module programming.
See Chapter 3, Deriving Your Own Module from Module for details.

Also have a look at the document Getting Started to learn the necessary steps in detail (and much
more with regard to using MeVisLab).

A.2. Programming Examples

Some programming examples are available with the MeVisLab software development kit. Here is an
overview of the most important ones.

 mlAddExample
Startup example for ML module programming.
* miBitimageExample
This module demonstrates the Bi t | nage class of the ML Tools project.

» mlFieldExample

165

Basics about ML
Programming and Projects

An example module which simply creates most ML fields and adds them to a module interface. It also
uses the new Vec8Field also derived in this library.

mlGlobalPagedimageExample

This module demonstrates how a Vi r t ual Vol ume and/or a TVi rt ual Vol ume instance can be used
to get a random read/write access to an input image during page-based processing and to demand
driven image processing.

mlKernel3In20utExample

Example class to demonstrate the implementation of a kernel-based algorithm with three inputs and
two outputs in the ML.

mlKernelExample

Example class to demonstrate the implementation of a kernel-based algorithm in the ML.
mlMarkerListExample

Example module generating an equally spaced linear set of Xvar ker objects.
MLObjVolume

Example module to store and retrieve volume information in a hard-coded bj Mgr information cell.
For details see the MeVisLab SDK.

mlProcessAllPagesExample
This is an example module to demonstrate how to process all pages of one or more (input) images.
mlSeparableKernelExample

Example class of the implementation of a kernel-based algorithm in the ML which implements
separable kernel filtering.

SmallimagelnterfaceExamplel, SmallimagelnterfaceExample2

Example modules to demonstrate the class Smal | | ragel nt er f ace which provides a very simplified
image processing interface for educational use. See the MeVisLab SDK for details.

mlSparselmageExample
Defines an example module which uses a Vi r t ual Vol une as a sparse image.
MLTypeAddExample

Example class to demonstrate the integration of a new voxel data type in the ML.

A.3. Exporting Library Symbols

If you want to implement classes for your module or your module itself in such a way that other projects
can also link their interfaces, you have to care about that in a particular way in order to make sure that

these types, classes and symbols are available even on Windows systems. For doing this correctly,

all symbols other libraries use must be exported; this is which is generally solved in ML projects by

writing a macro in front of your (e.g.) class containing the export code. The macro is normally defined

in the InitSystem.h file of your project where the platform-dependent stuff is implemented. The macro
is usually something like this:

166

Basics about ML
Programming and Projects

Example A.1. Exporting Library Symbols

I]------ Sol ve pl atform dependent synbol exporting with macros --------------
#i fdef WN32

#i f def M.EXAMPLE_EXPORTS

/1 To nmeke functions, classes and ot her synbols avail abl e
/1 on this DLL interfaces, they nust be exported explicitly
/1 on win32 systens. W add sinply M.EXAMPLE_EXPORT before
/1 them

#defi ne MLEXAMPLE_EXPORT __decl spec(dl | export)

#el se

/1! When included by other libraries M.EXAMPLE_EXPORT is
/1! conpiled as inport synbol.

#defi ne MLEXAMPLE_EXPORT __decl spec(dl I'i nport)

#endi f

#el se

/1 Non wi ndows systens:

/1! Exporting library synbols is not used on non wi ndows systens.
#def i ne MLEXAMPLE_EXPORT

#endi f

Class export is done with a code like this:
cl ass MLEXAMPLE_EXPORT AddExanpl e : public Mdul e{

I
M_EXAMPLE_EXPORTS is defined in the project CMvakelLi st s. t xt file; on Windows platforms, all classes of
the project, for example, will implement __decl spec(dl! | export) in front of the symbol so that it will be

available on the library interface. Other projects that do not define MLEXAMPLE_EXPORTS will implement
__decl spec(dl linport) to mark the symbol as linked from another library.

Such symbols are not defined on non-Windows platforms, i.e., the MLEXAMPLE_EXPORT will have no
effect on Linux, for example, because it is simply not compiled.

A.4. General Rules for ML Programming

There are many general rules an ML programmer should keep in mind:

* Implement all ML related code in the namespace ni , even the source code (please use macros
M__START_NAMESPACE and M_._END_NAMESPACE)!

Many ambiguities can be avoided and global namespace pollution is reduced.

» Use m Debug macros, or - if you really cannot avoid it - use std: : cout and std::cerr! Never
use (f)printf,cout or cerr from global namespace!

Otherwise, the debug output cannot be controlled or disabled. st d: : cout, std: : cerr and nl Debug
statements can be redirected and disabled by the ML. Forgotten outputs of ML modules (hundreds of
them exist) can be disabled and do not lead to output garbage in ML based applications. See module
Redi r ect St r eamin project MLSt r eanBuppor t if you want to redirect st d: : cout or std: : cerr to the
ML error handler.

» Never use abort (), exit() or other program terminating commands!

The ML cannot handle those terminations. Use dedicated ML macros for error handling as described
in Section 5.2, “Handling Errors”.

» Avoid global image processing algorithms!

Avoid them, even if they are sometimes faster or easier to implement. Always remember that ML-
based applications often use hundreds of modules and that just some modules that work with global
approaches can easily lock the entire memory so that is impossible for the ML-based applications to

167

Basics about ML
Programming and Projects

run safely. The ML is dedicated to working safely with huge networks which, however, is only possible
if programmers stick to the page-based image processing approach.

This is sometimes difficult, but see Chapter 4, Image Processing Concepts and Section 4.2.1
“Page-Based Concept”, Section 4.2.4, “Kernel-Based Concept” and Section 4.3.2, “Sequential Image
Processing Concept” for detailed information on the page-based, kernel-based, and sequential
image processing concepts as well as Section 2.3.7, “ Virtual Vol ume " for information on the
Vi r t ual Vol umre class to find an adequate algorithm approach that does not need too much memory.

e Document your module well, test it and optimize it!
Although this rule should be self-evident, it is seldom observed which often leads to big problems:

« Undocumented modules are useless (or to be even more precise: garbage) in a large module
database. They are not usable (since nobody knows how to use them), they hinder database users
from finding adequate modules by distracting the users and forcing them to spend time on checking
the modules.

« If such modules are used in macros (e.g., in MeVisLab), nobody has a chance to understand the
macro or to find bugs.

« Undocumented modules also tend to be buggy or untested which makes larger module networks
unsafe and unstable.

Always remember that especially MeVisLab applications often use hundreds of modules at once. This
would not be possible with unstable modules.

See Section A.5, “How to Document an ML Module” and Appendix B, Optimizing Image Processing for
a description of an adequate module documentation and for information on how to optimize modules.

» Use the ML functionality for error handling and memory allocation!

Only the ML can avoid exceeding memory usage and undesired application crashes. See Section 5.2
“Handling Errors”, ConstructingAndDeletingObjects [111], HandlingExceptions [109], and Chapter 5,
Debugging and Error Handling for more information.

» Name field pointers in your modules as field pointers!

Name them, e.g., with the appendix "FId" like "thresholdFId". That makes module code much easier
to read.

» Try to implement your algorithms for all 6 dimensions!

Programmers tend to forget that the ML supports fully 6D image processing and thus only implement
2D or 3D algorithms. Try to work high (6) dimensional algorithms; it is often easier than expected!

However, there are also algorithms which become quite difficult; try to support 6D by bypassing higher
image coordinates; so a 2D algorithm, for example, would be implemented in such a way that it

filters all slices of a 3D (or higher dimensional) image independently. Thus, also images of a higher
dimension can benefit from those algorithms even if it works only in 2D.

A.5. How to Document an ML Module

The following hints can help you to create a complete and useful documentation of your ML classes
and modules:

» Use Doxygen/Dot for the documentation of the source code. Have a look at existing source code.

» Add author name, creation date, filename to the file header.

168

Basics about ML
Programming and Projects

» Document the header file completely, that includes all members, methods, classes functions and
types.

« Document functionality, usage, side effects and default values of interface components for classes,
methods, functions, etc.

« The standard for Doxygen (http://www.stack.nl/~dimitri/doxygen/manual.html) with Graphviz/Dot (
http://www.research.att.com/sw/tools/graphviz/) is the standard for the header file and/or source code
documentation.

* When you use your modules in MeVisLab, your modules become really powerful. So make the ML
module usable for MeVisLab. This includes the following steps:

e Create an example network which demonstrates how your module works and insert this example
network as a link into the .def file with which it can be called from MeVisLab.

« Write a module help: choose Edit Help from the module's context menu to open MATE in mhelp
mode.

< Add keywords and cross references to the .def file. MeVisLab registers the module and other people
can search for it in the MeVisLab module database. Use reasonable keywords so that people can
find the modules in the MeVisLab databases.

These rules, of course, usually also apply to non-ML modules such as Open Inventor™ nodes or macros.

A.6. Updating from Older ML Versions

There is some stuff that should not be used or that is still supported by the ML but will be removed:

» Fields can still use external values as field values. This concept was implemented in the first ML
version to make it easier to port modules from the old | ngLab application. However, using such
references typically makes module programming more difficult than using the fields contents as
values. The normal way to port such code is to remove the externally referenced values/members
and to replace every occurrence of the value/member by fi el d- >get Val ue() calls or fi el d-
>set Val ue() calls. Be careful when using fi el d- >set Val ue() calls because the setting of a value
normally also notifies attached fields of that value change.

* You may sometimes find modules where field names start with capital letters or underscores, or
where field names contain spaces, commas or other non-alphanumeric characters. Some of these
field names are/were no error; however, they are not up to date anymore and can cause problems.
Normally, a field should start with a lowercase letter and it should contain alphanumeric characters
only. This makes module scripting (e.g., in applications such as MeVisLab) much easier and more
reliable. Also, field names should be very similar to the names of the member variables managing
those fields in the module code.

» Older modules often use a flag to suppress calls of the handl eNot i fi cati on() method in the module
while field values are initialized in the constructor or changed elsewhere. The more reliable way is to
use handl eNot i fi cati onOf f () and handl eNoti fi cati onOn() which does not need additional code
in handl eNoti fication() or a flag member in the module. Also see Section 3.1.2, “Implementing
the Constructor” for more information.

e Older modules often use cout, cerr or std::cout, std::cerr, printf or fprintf calls for
debugging or error handling purposes. The same is also true for exit(), abort() or assert()
statements. This is not desired in module programming because programmers tend to forget to
remove such calls, i.e., they will forever print information to the output streams, or the error will not
reach the central error handler of the ML. Replace those calls by nl Debug macros as described in
Section 5.1, “Printing Debug Information” or by the corresponding error handling macros as described
in Section 5.2, “Handling Errors”. The debug macros can also remain in the code and can be
selectively enabled or disabled during runtime.

169

http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.research.att.com/sw/tools/graphviz/

Basics about ML
Programming and Projects

A.7. Version Control

The ML offers a version number and some features to check for version compatibility of related binaries.
The projectM_Uti | i ti es (see Section 2.6.2,“M_U i | i ti es”)containsthe necessary file nl Versi on. h
. Also see Section A.7, “Version Control” for source code changes. Usually, there is no need for additional
checks in your code, because the ML automatically checks for the correct version (e.g., when calling
M.I nit () of the ML C-API (see Section 6.3, “mIAPI.h") or when initializing a dynamically linked library
with the M__I NI T_LI BRARY macro (see ML_INIT_LIBRARY [47])). It will print errors on version conflicts,
but will not refuse operation when a version conflict occurs.

Important

The ML can check for correct versions when it is initialized and when dynamic linked libraries
are linked on runtime. It, however, cannot check if different dynamic linked libraries are
compatible between themselves.

The following macros are available on compile time for versioning:

1.

M._MAJOR VERSI ON

The major release number that indicates general and essential changes to the ML (which usually
imply binary and header file incompatibilities).

M._MAJOR CAPl _VERSI ON

Changes to this number indicate binary incompatibilities of the C-API of the ML which require a
recompilation of applications using the ML via the C-API.

M__CPPAPI _VERSI ON

Changes to this number indicate binary incompatibilities of the C++ interface of the ML which
require a recompilation of all classes using C++ ML symbols. Also, changes to this number
sometimes indicate C++ header file incompatibilities. Note that the C++ API is also considered
changed when the C-API has changed.

M__CAPI _REVI S| ON

Changes to this number indicate a revision of the C-API of the ML which normally does not require
a recompilation of applications using the ML via the C-API; this is typically caused by additional
functionality in the C-API.

M__REVI SI ON

Changes to this number indicate any revision of the ML which does not influence the binary
compatibility (also docs, comments, installers); thus dependent classes do not need to be
recompiled.

M._VERSI ON_STRI NG

The version string is put together by the above five strings, the individual strings are separated by
".". So, the version string would begin with:

ML_MAJOR_VERSION.ML_MAJOR_CAPI_VERSION. (to be followed by the other three above
strings).

The following functions are available for runtime version checks:

1.

voi d M.Get Version(int *majorVersion, int *major CAPl Version, int *verCPPAPI, int
*revCAPlI, int *rev, const char **vString);

170

Basics about ML
Programming and Projects

Returns version information about the ML. It is legal to call it before the M.InitializeUtil s()
is called.

For all parameters, a NULL may be passed if that parameter is not needed.
» maj or Ver si on Returns the compiled major release number specified by M._MAJOR_VERSI ON.

e maj or CAPI Versi on Returns the compiled major C-API version number specified by
M._MAJOR CAP| _VERSI ON.

e ver CPPAPI Returns the compiled C++-API version number specified by M._CPPAPI _VERSI ON.

 rev Returns the compiled ML revision number specified M._REVI SI ON.

* revCAPI Returns the compiled C-API revision number specified by M._CAPI _REVI SI ON.

e vString Returns a null terminated character string as
"majorVersion.majorCAPIVersion.revCAPIl.verCPPAPL.rev".

i nt M.I sCAPI Li nkConpati bl e(i nt maj orVersi on, int majorCAPI Version, int revCAPI);

Checks whether the ML API is link compatible. It is legal to call this function before

MlInitializeWils() is called. Normally, it is not necessary to call this function "manually"”

because the ML does these checks automatically when the ML is initialized or modules are loaded.
A typical call looks like the following:

Example A.2. M.l sCAPI Li nkConpati bl e

if (!MIsCAPILi nkConpati bl e(M._MAJOR VERSI ON, M._MAJOR _CAPI _VERSI ON, M._CAPI _REVI SI ON))

handl eErr();

A non-zero value (=t rue) is returned if binary compatibility is given, and O if not.
Parameters are
» maj or Ver si on The major release number of the ML (normally specified by M._MAJOR_VERSI ON).

* maj or CAPI Ver si on The major C-API version number of the ML-API (normally specified by
M._MAJOR _CAPI _VERSI ON).

* revCAPI The revision number of the C-API of the ML-API (normally specified by
M._CAPI _REVI SI ON).

i nt M_I sCPPAPI Li nkConpat i bl e(i nt maj or Ver si on, i nt maj or CAPI Ver si on, i nt
ver CPPAPI, int revCAPIl);

Checks whether the C++-API of the ML is link compatible. It is legal to call this function before
MlnitializeUtils() is called.

Normally, it is not necessary to call this function "manually” because the ML does these checks
automatically when initializing the ML is initialized or modules are loaded. A typical call looks like
the following:

171

Basics about ML
Programming and Projects

Example A.3. M.l sCPPAPI Li nkConpat i bl e
i f (! M.I SCPPAPI Li nkConpat i bl e(M._MAJOR_VERSI ON,
M_MAJOR CAPI _VERSI ON,
M._CPPAPI _VERSI ON,
M._CAPI _REVI SI ON))

handl eErr();
}

It returns a non-zero value (=true) if binary compatibility is given, and it returns O if binary
compatibility is not given. Parameters are

» maj or Ver si on The major release number of the ML (normally specified by M._MAJOR_VERSI ON).

» maj or CAPI Ver si on The major C-API version number of the ML-API (normally specified by
M._MAJOR CAPI _VERSI ON).

* ver CPPAPI The C++-API version number of the ML (normally specified by M._CPPAPI _VERSI ON).

* revCAPI The revision number of the C-API of the ML-API (normally specified by
M._CAPI _REVI SI ON).

172

Appendix B. Optimizing Image
Processing

The following two sections discuss how to optimize image data flows in the ML and how to optimize
module code.

B.1. Optimizing Module Code

Use a profiler to analyze your module code.

Very simple and unsuspicious code fragments can often cost a lot of time. Before optimizing irrelevant
code find out where the time is actually spent.

Make sure that the time is really spent in your module.

Since an ML module usually does not work alone, it might happen that the time is spent in another
module or in the ML internals. Loading images via networks, badly paged images, implicit data type
conversions, changes to page extents, requests of big input subimages, etc. can require a lot of time
which is not spent in your module.

Make your image processing algorithm inplace.

This is not a very powerful optimization, but it may result in a slight speed-up if you already have a
fast algorithm.

Enable multithreading for cal cul at eQut put Subl mage() .

This enables the ML to call cal cul at eQut put Subl mage() in parallel. However, please be sure that
your algorithm in cal cul at eQut put Subl mage() is really thread-safe to avoid nasty bugs.

Avoid position calculations with 6D components.

Often, a straightforward position calculation handles 6D positions. Methods which get vectors or a
number of coordinates as parameters are usually expensive, because they require voxel address
calculations in all or many dimensions which then can become quite inefficient in inner loops. Try
to set a cursor (set Cur sor *Pos()) outside a loop and use the noveTo* () commands to move the
cursor within the loop. This usually results in a simple and fast pointer-add operation because the
compiler normally inlines that code.

Try to avoid changes of page extents or be careful when selecting a new one.

Changing page extents can result in a lot of expensive internal copying to compose input subimages
for other modules. Try to leave the extent of pages unchanged; then the internal ML optimizations
can recycle pages and page references optimally. When setting a new page extent, try to select one
which is not too big or too small, and which has an extent of powers of two. If possible use the helper
functions in Modul e to determine an optimal page extent.

Avoid inadequate page extents and inappropriate subimage requests.

Sometimes, page extents or image requests are not well suited, e.g., when you have images with
page extent (128x128x1x1x1x1) and request a subimage from (10,10,0,0,0,0) to (10,10,50,0,0,0,0), a
line of voxels perpendicular to all pages is requested. Hence, a large number of pages is processed,
and only one pixel is copied from each page. This is of course expensive. Think about the (sub)image
requests done in that pipeline and use adequate page extents when feeding an image into a module
pipeline.

173

Optimizing Image Processing

When a module network generally works e.g., slice-based with 2D viewers, 2D page extents are
usually appropriate; when you work with 3D algorithms which usually work volume-based or when
you are reformatting the image in different dimensions, 3D page extents might be useful, however,
a 2D extent is also okay in most cases. To avoid administrative overhead, page extents should not
be set too small.

Avoid page extents with dimensions that are higher than the dimension of the used image data,
because otherwise the ML host has to manage unused data regions in pages.

» Do not cast between data types and do not try to change data types from module inputs to outputs
if not really necessary.

When you change data types, you are using cast operations that can become quite expensive on
some systems, especially when casting floats to integers. This also inhibits inplace calculations and
page recycling in the ML core.

» Do not scale data if not really necessary.

When data is requested from the ML, this is often done by passing voxel value scaling information
to the request so that the data is delivered in the right interval range. This can lead to expensive
operations since implicit casting operations are often necessary then.

» Try to implement your algorithm page-based, i.e., select the optimal implementation approach for
your algorithm.

Algorithms which are not page-based (i.e., global image processing approaches) lock much memory;
they often force the operating system to perfrom virtual memory swapping, they fill up the ML cache,
and they often change page extents in a module pipeline, i.e., they do not work optimally with
the optimized ML concept. When you need such algorithms, try to use approaches such as the
Vi rt ual Vol ume approach (Section 2.3.7, “ Vi rtual Vol une_ ") to merge global image processing
with page-based approaches. Selecting the correct implementation approach can drastically speed
up your algorithm. See Chapter 4, Image Processing Concepts for a detailed discussion of such
approaches.

* Request input subimages in "read only" mode.

The ML can pass pointers to cache pages directly as input subimages. That reduces memory
allocations and copying in some cases. Note that this mode may not be available in some ML versions.

B.2. Optimizing Data Flow in Module
Networks

» Spend enough memory for the ML cache!

The ML image processing benefits strongly from sufficient cache memory. Usually, 30-50% of the
main memory is a good value.

* Reduce field notifications!

The more notifications are sent around through the network the more changes and calculations take
place. Find out the really necessary field connections and changes and limit them to the minimum.

» Avoid global image processing modules or take them outside critical network branches!

Global image processing modules (unfortunately, there are some in most networks) are often
extremely expensive because they pull the entire image through the module pipeline and thus negate
many advantages of page-based image processing. Solutions can be:

174

Optimizing Image Processing

« "Qutsource" large images and expensive calculations. Calculate them once and store the results
on disk. Then replace it by a Load module in the network. This, however, is often not possible, e.g.,
if module results change often.

e Try to replace those module by other page-based solutions. Maybe other modules provide similar
functionalities.

* Move expensive calculations to less frequently used and changing parts of the data flow. Often -
not always - the image data flow and the number of changes are higher near the output or viewer
modules than directly after e.g., a Load module.

« Reimplement the module and make it page-based, e.g., by using the Vi r t ual Vol une concept (see
Section 2.3.7, “ Vi r t ual Vol unme ”). Although this is sometimes difficult and a page-based approach
may be slower considering the local processing in the module, the page-based image flow is not
interrupted. This can result in a significant performance boost since data flow can be reduced.

Avoid or reduce unnecessary changes of image properties (especially page extents, data types, image
extents, etc.) in the image data flow!

Changing image properties from one module to another usually requires expensive casting and/or
copying of the image data or also a recomposition of pages.

Set number of permitted threads to the number of CPUs in your system!

Multithreading (parallelization) currently works optimally if the number of permitted threads in the ML
matches the number of CPUs in your system.

Increase performance by reducing the memory optimization mode!

If there is enough memory, you can usually increase performance by reducing the memory
optimization mode to lower numbers or even to zero. Hence more intermediate results are saved in
the cache and the number of recalculations is reduced.

Consider the image format, compression and source when loading data from files!

Loading data can become slow when the file needs to be transferred via network connections or when
the file format is compressed. Try to load files from local disks and/or store them uncompressed if you
have enough disk space. Compressing files does not save memory when the image is compressed
with ML modules. If the file format supports paging, store the file with a page extent adequate for
image processing.

Increment the memory optimization mode to optimize memory usage!

If your network suffers from a lack of memory, increment the memory optimization mode to optimize
memory usage; more pages are recalculated and less pages are buffered in the cache. This, however,
usually reduces image processing speed.

Use release versions of the ML and MeVisLab!

When you develop your own software with the ML or with MeVisLab, you may probably work in debug
mode and non-optimized code. Compiling release-mode code with optimizations may drastically
speed up your applications.

Disable (symbol controlled) debugging!

Working in debug mode with symbol-controlled debugging may degrade performance during
operation, because information is printed to the output. Disable symbol-controlled debugging or use
release version code which automatically does not contain such code.

175

Appendix C. Handling Memory
Problems

The ML is designed to work with large images and with many modules that work on these images. This,
however, does not mean that working with large images and many modules is no problem anymore.
It is still possible to run into memory problems that the ML cannot avoid automatically. In most cases,
these problems can be solved by reconfiguring some settings.

1.

Check whether you machine has enough main memory!
Problem: The computer does not have sufficient physical memory.

Possible Solution: Theoretically, pure ML programs could work with only a few MB of main
memory. In many cases, however, the processed images and the applications using the ML
programs will strongly benefit from more memory. 256 MB is considered to be a reasonable
minimum memory size; assign as much memory as possible to achieve optimal results. Working
with a memory of less than 256 MB might be possible but will often lead to slow performance and
will also require the ML and the images to be configured appropriately. The following items might
help you to work with less than 256 MB, but they do not guarantee success.

Check whether other applications use too much memory!
Problem: Other applications use too much memory.

Possible solution: Terminate other applications running on your system, especially those which
use much memory. To find out which application uses much memory, check the Task Manager
(Windows systems) or use "top" (Linux systems).

If you do not want or cannot terminate those applications, it might help to make these applications
sleep or to set them to an inactive state; the system can swap the memory that these applications
use into the virtual memory and your ML process can use the physical memory more efficiently.
That, however, might require you to increase the virtual memory size of your system.

Set an adequate ML cache size!

Problem: The ML uses the cache to reduce the number of required page recalculations. If the user
spends too much cache memory, the ML will try to use it, even if the required physical memory
is not available which might lead to a memory allocation failure. This problem often occurs after a
certain working time, because the cache needs some time to be filled with calculated data.

Possible solution: Take the physical memory size of your computer, subtract the memory other
applications and the system require (to find out these values you may want to use the "Task
Manager" on Windows systems, or "top" on Linux systems), and also subtract the memory that the
application using the ML needs (in most cases MeVisLab which works fine with about 256 MB).
The remaining memory size should be the maximum limit for your cache size - better use less
when you are not absolutely sure. A cache size that is too small can degrade image processing
performance, but normally does not lead to memory problems since the ML will always use the
minimum memory requirements for image processing, even if it exceeds the cache size.

‘ Note
MeVisLab 2.0 and newer versions will not have an ML cache anymore but a global
cache for ML and other libraries such as GVR or MeVisAP. The cache limit should be
set to the size of the available free memory there.

Avoid global image processing modules or take them outside critical network branches!

176

Handling Memory Problems

Problem: For different reasons, some ML modules request or lock so much memory that there is
not enough memory for the system and the ML. This is often caused by inadequate or lazy algorithm
programming, performance requirements or bad parameter settings of the ML or some modules.

Possible Solutions:

e Try to replace those modules by other page-based solutions or - if the modules have such a
parameter - select a page-based algorithms setting. There might be other modules which perform
similar or the same tasks.

» Outsource large images and memory-expensive calculations. Calculate them once and store the
results on disk. Then replace them by a Load module in the network. This, however, is often not
possible, e.g., when module results change often.

» Reimplement the module and make it page-based, e.g., by using the Vi rt ual Vol une concept
(see Section 2.3.7, “ Vi r t ual Vol ume ") or by using more efficient or packed data structures such
as the Bi t | mage concept (see e.g., Section 4.4.3, “Bi t | mage_Concept” for details) to manage
flag images.

The processed images are too large

Problem: The ML cannot process images with inappropriate page and image extents; e.g., extents
with dimensions of more than 23 or pages with more than 512K voxels.

Possible Solution: The ML can process images with up to 244 voxels, even on 32 bhit systems.
However, the extent in each dimension should not exceed 23! and the number of pages per image
is limited to 2%°. Hence, try to avoid extreme extents in any dimension and too small and also too
large pages.

The page extent is too large

Problem: One or more modules in the network set a page extent which is too large (e.g., sometimes
modules use image extent for page extent). This leads to a degeneration of the image processing
process in the network. As a result, paging, caching, multithreading and effective memory usage
do not work appropriately anymore.

Possible Solution:

« Ifthe loaded inputimage has already an inadequate page extent (e.g., the page extent s identical
to the image extent), try to load the module, set the page extent to a smaller value, e.g., with
the 1 magePr oper t yConvert module, and save the image with this new page exent under a new
filename. Use that new image instead of the original one.

» Tryto find those modules in the network and the reasons why they specify an inappropriate page
extent. If possible, reconfigure or replace these modules in such a way that large page extents
do not occur anymore.

« If the modules cannot be reconfigured or replaced you may want to revise the module in such
a way that it does not set these page extents anymore; that might be sensible because setting
such an page extent is "bad module behavior" and may cause other users to have the same
problem in the future.

The process runs continuously out of memory after long usage
Problem: Although it should not happen in well-programmed code: module networks often include
a large number of stable and new modules and sometimes some of these modules have memory

leaks that result in memory problems after longer operation.

Possible Solutions:

177

Handling Memory Problems

Check the memory your process uses (use e.g., "Task Manager" on Windows or "top" on
Linux) and check whether this behavior remains when you have temporarily deactivated some
network components or some functionality. Thus you can isolate the module(s) that cause such
a problem.

‘ Note
Be aware that the ML also caches memory. To distinguish memory leaks from

cached image fragments, use the d ear Image Cache in the menu Extras of
MeVisLab or the O ear Cache feature of the Cor eCont rol module.

Use software tools or libraries which allow for checking for memory leaks. It might be helpful
to check all modules used with the module tester of the MeVisLab application (if you work with
MeVisLab); this could be the fastest way to detect memory leaks. You can also use the Test er
module of the project MLDi agnosi s.

If all the above measures do not help

The measures might reduce memory usage and could be helpful; they, however, do not solve the
actual problem:

Try to work on downscaled images or on image fragments.
Use 2D slice viewing instead of 3D volume rendering.
Do not use the MentCache or other memory caching modules.

Increase the memory optimization mode in the Cor eCont r ol module; this reduces the cache
load at the expense of computing performance. Note: This mode is not available anymore in
MeVisLab 2.0 or newer versions.

Simplify your module network and/or use smaller subnetworks to process images step by step
and not at once.

Disable multithreading, because it temporarily uses more memory than single threading.

Increase the virtual memory size of your computer. This could increase reliability of the process
but also may degrade performance if it is used too much.

Think about adding more memory to your computer, if possible.

Migrate to a 64 bit MeVisLab/ML version if you have not done so yet, and/or buy more memory.

178

Appendix D. Messages and Errors

Error messages and other messages are usually sent to the ML Error Quput class, where they are
sent to all registered handlers which need to handle them (see Section 5.4, “The Class Er r or Qut put
and Configuring Message Outputs”). Not only messages and errors from modules or from the ML are
sent to those handlers but also messages from other libraries or applications. In MeVisLab, for example,
MeVisLab itself and the Open Inventor™ library redirect their outputs to the ML ErrorOutput. Hence,
there is a large variety of messages. The following list only describes the currently known predefined
messages and errors.

D.1. ML Error Codes

The following list explains each predefined ML error code. Note that other error codes may appear
which are registered by applications or modules for advanced error handling. Refer to the corresponding
documentation in such cases.

1. (MLErrorCode 0) ML_RESULT_OK - "Ok"
No error. Everything seems to be okay.
2. (MLErrorCode 1) ML_UNKNOWN_EXCEPTION - "Unknown exception occurred"

An unknown exception has been detected and caught. This usually means that something - for
an unknown reason - went absolutely wrong and which should normally result in a program crash
which is detected by the ML or a module. Look for previous errors, they may give more precise
information. Try to reproduce this error and report it to the developer.

3. (MLErrorCode 2) ML_NO_MEMORY - "Memory allocation failed"

The system does not have enough memory to perform the desired operation. Try to reduce
application data and/or complexity, try to replace modules which load an entire image into the
memory, terminate other applications running at the same time, buy more memory, etc.

4. (MLErrorCode 3) ML_DISCONNECTED_GRAPH - "Operator graph disconnected"

The module/operator graph is obviously disconnected but expected to be connected for this
operation.

5. (MLErrorCode 4) ML_CYCLIC_GRAPH - "Operator graph has cycle"

The module/operator graph is connected cyclically. The ML cannot handle this. Search for the
cyclic connections and remove them. Normally, this error should not occur.

6. (MLErrorCode 5) ML_BAD_OPERATOR_POINTER - "Bad operator pointer"
A NULL, an invalid or a wrong module/operator pointer has been passed to an algorithm.
7. (MLErrorCode 6) ML_BAD_OPERATOR_OUTPUT_INDEX - "Bad index of output image"
A bad output index of a module/operator has been specified.
8. (MLErrorCode 7) ML_BAD_FIELD - "Bad field pointer or name"
A NULL, an invalid or badly/wrongly typed or named field has been passed to an algorithm.
9. (MLErrorCode 8) ML_IMAGE_DATA_ CALCULATION_FAILED - "Calculation of image data failed"

The requested image data could not be calculated. There is a variety of possible reasons. Look
for previous errors, they may give more precise information. Try to reproduce this error and its
circumstances and report them to the developer.

179

Messages and Errors

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

(MLErrorCode 9) ML_NO_IMAGE_INPUT_EXTENSION - "Calculation of required image input
extension failed"

Currently not used.
(MLErrorCode 10) ML_NO_IMAGE_PROPS - "Calculation of image properties failed"

The calculation of image properties failed. There is a variety of possible reasons. Normally, this is
a return code of functions accessing modules which cannot calculate a valid output image (this is
often a legal state). If this is reported as an error or even a fatal error, look for previous errors, they
may give more precise information. Report it to the developer if it seems to be a technical problem
and not the report of a normal output state of a module.

(MLErrorCode 11) ML_BAD_OPERATOR_INPUT_INDEX - "Index to operator input is invalid”
A bad input index of a module/operator has been specified.
(MLErrorCode 12) ML_BAD_INPUT_IMAGE_POINTER - "Pointer to input image is invalid"

A NULL, an invalid or badly/wrong sized/typed image pointer has been passed to an algorithm. If
no previous errors occurred, it might indicate a programming error or missing checks for invalid
input connections, bad in/output indices, etc.

(MLErrorCode 13) ML_BAD_DATA_TYPE - "Bad data type"

A wrong or unexpected data type has been passed to an algorithm. This is often a programming
error. There is a variety of possible reasons. Look for previous errors, they may give more precise
information. Try to reproduce this error and its circumstances and report them to the developer.

(MLErrorCode 14) ML_PROGRAMMING_ERROR - "Programming error"

A situation occurred which should not appear. There is a variety of possible reasons; typically, itis a
programming error in a module. Look for previous errors, they may give more precise information.
Try to reproduce this error and its circumstances and report them to the developer.

(MLErrorCode 15) ML_EMPTY_MESSAGE - "<No Error Message>"

The following error message describes more precisely what has happened. If not, a non-registered
error occurred which is only known in the module where the error appeared. Have a look at
the documentation of the module that produced the error. This code might also be passed with
messages which are of another type, e.g. with debug information or user information.

(MLErrorCode 16) ML_PAGE_CALCULATION_ERROR_IN_MODULE - "Page calculation error in
module"

An image page could not be calculated. There is a variety of possible reasons. Often, this is a
programming error in a module, but it can also be a result of an interrupted image processing in a
module pipeline. Look for previous errors, they may give more precise information. Try to reproduce
this error and its circumstances and report them to the developer if the error is not the result of
a controlled interruption.

(MLErrorCode 17) ML_PROPERTY_CALCULATION_ERROR_IN_MODULE - "Property
calculation error in module"

Image properties could not be calculated correctly. There is a variety of possible reasons. Often,
this is a programming error within a module. Look for previous errors, they may give more precise
information. Try to reproduce this error and its circumstances and report them to the developer.

(MLErrorCode 18) ML_INBOX_CALCULATION_ERROR_IN_MODULE - "Inbox calculation error
in module"

180

Messages and Errors

20.

21.

22.

23.

24,

25.

26.

27.

The input image region required the calculation of an image page which, however, could not
be calculated correctly. This is often a programming error within a module leading to a crash
and MLErrorCodes which was detected by the ML. There is a variety of possible reasons. Look
for previous errors, they may give more precise information. Try to reproduce this error and its
circumstances and report them to the developer.

(MLErrorCode 19) ML_BAD_PARAMETER - "Bad parameter"

A bad/invalid parameter (or even an inappropriate image) has been passed to a module or an
algorithm. This usually means that an invalid or inappropriate parameter has been passed to an
algorithm, that the developer has forgotten to implement a certain case or that a parameter is out
of range. Read the subsequent error information on how to handle this error.

(MLErrorCode 20) ML_CALCULATION_ERROR - "Calculation error"

This is an error code used in some cases when the error is not very specific. There is a variety
of possible reasons. Often, a programming error in a module caused a crash which was detected
and handled by the ML. Some diagnostic modules also use this error code, e.g., to notify of an
error about invalid calculation results, for example. Look for previous errors and additional error
information shown with this error, they may give more precise information. Try to reproduce this
error and its circumstances and report them to the developer.

(MLErrorCode 21) ML_BAD_DIMENSION - "Bad image dimension"
The image or data structure has a wrong extent or wrong dimensions.
(MLErrorCode 22) ML_RECURSION_ERROR - "Invalid recursion”

An invalid recursion occurred. When detected, it is usually broken to avoid subsequent crashes,
but it usually also returns invalid results which also might lead to further errors. Often, this error
occurs when ML image data is converted/rendered into a 3D OpenGL or Inventor Scene (e.g.,
by volume or iso surface rendering) which again is converted to an ML image (e.g., by snapshot
or rasterization modules). This leads to invalid reentrances into the ML during image processing
which are broken and commented by this error.

A solution might be to reconfigure your module network so that module connections (image or
node) from Inventor to ML and again to an Inventor node do not exist anymore. It also could help to
complete an ML image calculation depending on Inventor node(s) before another Inventor/Viewer
module requests image data from that ML module.

(MLErrorCode 23) ML_LIBRARY_LOAD_ERROR - "Library load/init failed."

Loading or initialization of an ML module library failed. The shared library file may not exist at the
searched place, a path to the libraries may be wrong, the library may not be up to date, symbols in
the library interface may be missing or the library is of another or outdated version. The installation
could be incomplete or damaged.

(MLErrorCode 24) ML_FILE_IO_ERROR - "File 1O error" Opening, closing, reading, writing or
searching of any file failed.

There is a variety of possible reasons: A wrong file path may have been specified, other applications
may use the file, file permission may be wrong, disk space may be not sufficient, etc.

(MLErrorCode 25) ML_AFTER_EFFECT - "Error due to previous error(s)"

This is a typical error that occurs when another previous error has left an incomplete or undefined
state. Look for previous errors, they may give more precise information.

(MLErrorCode 26) ML_BAD_INDEX - "Bad index"

181

Messages and Errors

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

The index given to the algorithm is out of range. Sometimes, this is a programming error or due to
an (user) interface that has been sloppily implemented and passes invalid user inputs.

(MLErrorCode 27) ML_OUT_OF_RANGE - "Out of Range"

A coordinate or value is out of range, often a voxel address which is outside of an image. Often,
this is a programming error or caused by using an image with an invalid content.

(MLErrorCode 28) ML_MISSING_VOXEL_TYPE_OPERATIONS - "Missing voxel type operations"

A voxel data type does not implement the required arithmetic operations. Often, this is a
programming error. This error also indicates that a module does not support calculations on the
connected input voxel type.

(MLErrorCode 29) ML_BAD_FIELD_TYPE - "Bad field type"

The passed parameter is not derived from the class field or is not of the expected field type. This
can be a programming error.

(MLErrorCode 30) ML_BAD_FIELD POINTER_OR_NO_MEMORY - "Bad field pointer or memory
allocation failed"

The passed parameter is not of an expected (field) type or the allocation of memory failed.

(MLErrorCode 31) ML_FIELD_CREATION_ERROR_OR_NO_MEMORY - "Field creation error or
memory allocation failed"

A field could not be created (e.g., because the field type is still not registered in the runtime type
system or the corresponding shared library is still not loaded) or the field creation failed due to
lack of memory.

(MLErrorCode 32) ML_TYPE_INITIALIZATION_ERROR - "Type initialization error"

A (runtime or voxel data) type could not be initialized correctly.

(MLErrorCode 33) ML_CONSTRUCTOR_EXCEPTION - "Exception in new"

Creating an object failed due to a programming error in a constructor or due to lack of memory.
(MLErrorCode 34) ML_DESTRUCTOR_EXCEPTION - "Exception in delete"

The destruction of a C++ object failed, e.g., due to a programming error or because it was destroyed
by other buggy code.

(MLErrorCode 35) ML_TABLE_FULL - "Table full"
A table is full and nothing can be inserted anymore.
(MLErrorCode 36) ML_EXTERNAL_ERROR - "Error from external library or application”

Error messages from other libraries are delivered with this error code if more specific error
information from the external library is not available.

(MLErrorCode 37) ML_BAD_BASE_FIELD - "Bad base field type"

The (runtime) type of a Base field is not the expected one, the Base field pointer is invalid (NULL)
or it is not (derived from) a Base field.

(MLErrorCode 38) ML_BAD_BASE_FIELD_CONTENT - "Bad content in base field"

The pointer content of the Base field is invalid, i.e., it should not be NULL or it does not point to
an object derived from Base.

182

Messages and Errors

40.

41.

42,

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

(MLErrorCode 39) ML_TYPE_NOT_REGISTERED - "Required type not registered"

The required or used type is (still) not registered. You probably forgot to call
"YourClassName::initClass" in your initialization file, or there is a missing linked library which
contains the type but which has not been loaded yet. Maybe a library dependency has been
forgotten in the project (make) file or types are initialized in the wrong order in a library init file.
(MLErrorCode 40) ML_LIBRARY _INIT_ERROR - "Library init failed"

The initialization code of a library failed. This is a typical error when the ML, an application or a linked
library has detected an initialization problem. This can, for example, be due to an invalid version
number (i.e., a binary incompatibility), forgotten recompilations of self-defined libraries, paths to
(outdated) linked libraries, etc. or the usage of incompatible library and application installers.
(MLErrorCode 41) ML_BAD_POINTER_OR_0 - "Bad pointer or 0"

A pointer is NULL or a value is NULL or O where it should not be. This sometimes indicates a
memory allocation error, a programming error, a forgotten NULL pointer check at function entries
or also bad function results or objects which have not been found.

(MLErrorCode 42) ML_BAD_STATE - "Bad state"

The current state of an object is not appropriate for an operation. Maybe it is not initialized or in a
valid but inadequate state. This also might indicate that the program ran into an undefined state
which should not be possible.

(MLErrorCode 43) ML_TOO_MANY_PUSHES_OR_ADDS - "Too Many Pushes Or Adds"

Too many elements were pushed or added onto a stack, array or another container type.
(MLErrorCode 44) ML_TOO_MANY_POPS OR_REMOVES - "Too Many Pops Or Removes"
Too many elements were removed from a stack, an array or another container type.
(MLErrorCode 45) ML_STACK_TABLE_OR_BUFFER_EMPTY - "Stack Table Or Buffer Empty"

The access to a table, stack or container or its elements failed, because it is empty.

(MLErrorCode 46) ML_STACK_TABLE_OR_BUFFER_NOT_EMPTY - "Stack Table Or Buffer Not
Empty"

A table, stack, or another container was expected to be empty, but it is not.
(MLErrorCode 47) ML_ELEMENT_NOT_FOUND - "Element Not Found"
An expected entry or element was not found.

(MLErrorCode 48) ML_ - "InvalidFileName"

The specified file name is not valid, for example, because it is empty or because it contains invalid
characters or path specifications or simply because it does not specify a correct file.

(MLErrorCode 49) ML_INVALID_FILE_DESCRIPTOR - "InvalidFileDescriptor"
The descriptor used to manage a file is invalid or denotes a closed file.
(MLErrorCode 50) ML_FILE_NOT_OPEN - "FileNotOpen"

The specified file is not open.

(MLErrorCode 51) ML_NO_OR_INVALID_PERMISSIONS - "NoOrInvalidPermissions"

183

Messages and Errors

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

The operation cannot or could not be executed because the user or the process does not have
appropriate permissions or the permissions of the object to manipulate are not set correctly.

(MLErrorCode 52) ML_DISK_OR_RESSOURCE_FULL - "DiskOrResourceFull"

There are not enough resources left to execute the desired operation. This typically indicates that
the disk is full or that there is not sufficient memory for this operation.

(MLErrorCode 53) ML_FILE_OR_DATA_STRUCTURE_CORRUPTED -
"FileOrDataStructureCorrupted"

The content of a file or another data structure is not organized as expected by the program. This
may indicate a broken file, an overwritten data structure or sometimes a newer and still unknown
version of a file. It could also indicate a file or data structure created by another application which
uses the same named types or files.

(MLErrorCode 54) ML_INVALID_VERSION - "InvalidVersion"

The version of a data structure of file is invalid; maybe the version is newer than expected. An
update of the software could help.

(MLErrorCode 55) ML_UNKNOWN_OR_INVALID_COMPRESSION_SCHEME -
"UnknownOrInvalidCompressionScheme”

The compression scheme is invalid, too old, too new or not known on your system. A compression
scheme could have been used on another system to store a file which cannot be loaded on the
local system, because the (de)compressor is not known on the local system. It could also indicate
a corrupted data structure or file, or even a library that is missing or has not been installed..

(MLErrorCode 56) ML_TYPE_ALREADY_REGISTERED - "TypeAlreadyRegistered"

This error occurs on an attempt to register a type whose name is already registered. This might,
for example, happen when the system detects backup copies of modules or libraries and tries to
load them, when a type initialization is called more than once, when older library paths are besides
the current ones or when two developers independently developed types or classes with the same
name.

(MLErrorCode 57) ML_TYPE_IS_ABSTRACT - "TypelsAbstract”

The runtime type to be used is abstract and cannot be used (an object of that type, for example,
cannot be created then).

(MLErrorCode 58) ML_TYPE_NOT_DERIVED_FROM_EXPECTED_PARENT_CLASS -
"TypeNotDerivedFromExpectedParentClass”

The used class type is not of the expected type and/or is not derived from the expected parent/
base class.

(MLErrorCode 59) ML_OPERATION_INTERRUPTED - "Operationinterrupted"
The operation was interrupted, either by a user or another signal.
(MLErrorCode 60) ML_BAD_PAGE_ID - "BadPageld"

This error comments the attempt to use an identifier or index to an (image) page which does not
exist or which is out of range.

(MLErrorCode 61) ML_OUT_OF_RESSOURCES - "OutOfRessources"

There are not enough resources to execute the desired operation. This might, for example, happen
when the maximum number of open files, processes, threads, etc. is exceeded, or when the
operating system does not have sufficient memory for the desired operation.

184

Messages and Errors

63.

64.

65.

66.

(MLErrorCode 62) ML_OBJECT_OR_FILE_EXISTS - "ObjectOrFileExists"

The object or file to be created already exists.

(MLErrorCode 63) ML_OBJECT_OR_FILE_DOES_NOT_EXIST - "ObjectOrFileDoesNotExist"
The expected object or file does not exist or is not found.

(MLErrorCode 64) ML_DEADLOCK_WOULD_OCCURR - "DeadlockWouldOccurr"

The operation cannot be executed because it would lead to a deadlock.

(MLErrorCode 65) ML_COULD_NOT_OPEN_FILE - "CouldNotOpenFile"

The file could not be opened because, for example, the permissions are not sufficient, resources
for opening are not available, the file could not be found, or the file is already open.

185

Appendix E. Improving Quality of ML-
Based Software

The ML and its modules are often used in contexts where robustness and reliability are of crucial
concern. This is especially true for MeVisLab which uses the ML for image processing in medical
applications to a large extent. Therefore remember the following aspects when you develop software
based on the ML:

» General Software Quality

See Section A.4, “General Rules for ML Programming” for strategies on how to improve software
quality, and on how to simplify maintenance of source codes, modules and ML-based applications.

» Logging

All tracing information, messages, warnings, and errors are sent to the ML error manager. Application
developers can install a callback functionality there and redirect all this information to (application)
specific output channels. See Section 5.4, “The Class Error Qut put _and Configuring Message
Outputs” and Section 5.3, “Registering Error Handlers” for details and how an application and the ML
error manager can be configured to receive all messages from the ML.

» Debugging Support

See Chapter 5, Debugging and Error Handling with subsections Section 5.1, “Printing Debug
Information”, and Section 5.4, “The Class Error Qut put _and Configuring Message Outputs” for
information on debugging.

* Robustness of Source Codes, and Error Management and Detection

See Section 5.5, “Tracing, Exception Handling and Checked Object Construction/Destruction”,
Section 5.2, “Handling Errors”, and Appendix D, Messages and Errors for information on crash-
safe function development, safe resource allocation and releasing, available error codes, and their
meaning. See Section A.7, “Version Control” for information on how checks for correct ML versions
can be implemented.

* Memory and Performance Risks

Further potential problems in applications are out-of-memory situations and too slow or even hanging
program executions. See Appendix C, Handling Memory Problems for strategies on how to configure
the application for safe and limited memory consumption. See Appendix B, Optimizing Image
Processing and the subsections Section B.1, “Optimizing Module Code” and Section B.2, “Optimizing
Data Flow in Module Networks” for details on performance optimizations in module code and in
module networks.

* Documentation

The module data base, its use and its maintenance require certain documentation standards on
source code level and on user level. See Section A.5, “How to Document an ML Module” for
information on the recommended documentation.

186

Glossary

Modul e
M_Menor yManager

Field

Ker nel

DICOM

Doxygen

Exceptions (Catching)
FieldContainer

MeVisLab

Inplace Calculation

Internationalization

ITK™

The base class for all image processing modules. By overloading
its methods and changing the class configuration, all desired image
processing algorithms can be implemented.

The library which manages buffers in memory that store intermediate
results of (image) calculations which potentially will be reused. By
reusing them, time for recalculating them is saved.

A C++ class or object which usually encapsulates a data value, e.g.,
an integer or a vector. Fields can be observed so that the observer is
notified when the field is changed, and fields can be connected among
each other so that values changes are automatically propagated to
other fields. Fields have a type and their values can be set or retrieved
as a string or as a typed value. Thus, values between different typed
fields can also be propagated as string values.

A usually rectangular matrix or array of values or only a region which is
placed onto a image voxel. A certain region around a voxel is specified
and it is easy to calculate a new voxel value from that area. Often, a
kernel is moved over all voxels of an image to filter it. Typical kernel
operations on images are smoothing, sharpening, dilation, erosion,
rank filters and many more.

DICOM = Digital Imaging and Communications in M edicine standard.
Standard communication protocol and file format for medical image
data and information.

Doxygen is a documentation system for C++, C, Java, Objective-
C, IDL (Corba and Microsoft® flavors) and to some extent PHP, C#
and D. It is used to document the source of MeVisLab, the ML and
ML modules. See http://lwww.stack.nl/~dimitri/doxygen/index.html for
more information on this free software.

A way to handle (un)intentional errors or undesired/special states in
programs. Often used to detect and/or handle errors in programs.

A C++ class used especially in Mbdul e objects to store and manage a
list of fields containing parameters for ML modules.

The Image Laboratory, a toolkit for rapid prototyping and development
of applications. It uses the ML and Open Inventor™ a lot and offers
specialized features for medical imaging.

Usually an algorithm has input (image) data in one or more buffers
and calculates a result written in an output buffer. This requires at
least two buffers. Some algorithms can write the result directly into
the input buffer(s) which is also the output buffer at the same time
which then work or calculate inplace. Hence the creation/initialization
and destruction of a buffer is spared which usually results in better
performance.

Internationalization is the capability of software to be used in systems
with different languages. This e.g., requires translated texts and
unicode support (see Chapter 9, Unicode Support).

The Insight Segnentation and Registration Toolkit ™. A
large and well known open-source image processing library which has

187

Glossary

Lazy Evaluation

ML

Multithreading

Node

Open Inventor™

Page

Page-Based
Processing

Image

Processing On Demand

Pull Model

Runtime Type System

Subl mage

Tile

Unicode

Vi r t ual Vol une

Voxel

been wrapped in many parts for MeVisLab to work fine with other ML
modules. See www.itk.org and www.mevislab.de for detalils.

Information is only processed/evaluated by the ML when it is really
needed or requested. Otherwise, the ML is lazy. This is similar to
Processing On Demand or the Pull Model.

The MeVis Image (Processing) Library.

The possibility to execute program code in parallel, e.g., of CPUs which
can result in performance gains. Thus, two pages of an image, for
example, can be processed in parallel by two CPUs which is faster than
processing the pages sequentially. Such a program code, however,
must fulfill some requirements so that programming with multithreading
may become difficult.

The SoNode class is a base class inherited by many Open Inventor™
classes to implement 3D objects, their properties or behavior, like 3D
text, cubes, cones, transformations, colors, textures, etc. They usually
can be composed to a 3D scene graph to build a 3D visualization.

An object-oriented 3D toolkit, a library of objects and methods used for
interactive 3D graphics.

An image sub-region of predefined extent; an (paged) image can
usually be composed of a set of non-overlapping rectangular pages of
identical extent. Pages may reach outside an image. A page is also a
tile (or subimage), but tiles (subimages) are not necessarily pages.

Processing an image not as a whole but in fractions, where only those
fractions of the image are calculated which are really needed to achieve
the result.

Results are only calculated when they are really needed; so a display
needs to request the data it wants to show; i.e nothing is calculated
without that request. This is similar to Lazy Evaluation or Pull Model.

Information is pulled (from a Viewer, for example) by other modules
before the information is shown in a display; this is similar to Processing
On Demand or Lazy Evaluation.

Database that stores information about many or all important class
types of the library. It is also used to create instances from classes
specified by a string name, to retrieve inheritance information and the
name of the dynamic linked library where it comes from.

A (usually rectangular) sub-region of an image; synonym for "tile".

A (usually rectangular) sub-region of an image; synonym for
"subimage".

Unicodes are used to provide string encodings with international
characters. They are needed when language-specific characters or
e.g. Chinese symbols are to be handled in strings.

Permits access to a paged image as if it was a global image. Only used
image pages are mapped into memory, all other areas are not. Hence,
an image of a potentially unlimited size can be handled using only a
minimum amount of memory.

The entity an image is composed from. Usually, one number such as
an integer or a floating point number, but sometime also a structure

188

Glossary

VTK™

Wizard

containing several entities. The term "voxel" is made up from the words
Volume and pixel (Picture Element).

The Vi sual i zati on Tool kit ™. Alarge and well known open-source
visualization library which has been wrapped in many parts to work
also in MeVisLab. See http://www.vtk.org and https://www.mevislab.de
for details.

A wizard (more specifically called Module Wizard in this document)
is a tool supporting a developer to create ML modules and the
context needed for compiling and integrating the ML modules into an
application. A module wizard is provided by MeVisLab which uses ML
modules a lot. See Appendix A, Basics about ML Programming and
Projects for details.

189

http://www.vtk.org
https://www.mevislab.de

	The ML Programming Guide
	Table of Contents
	About This Document
	1. What This Document Contains
	2. What You Should Know Before Reading This Document
	3. Suggestions for Further Reading
	4. Conventions Used in This Document
	5. Quick Start

	Chapter 1. Conceptual Overview
	1.1. Overview
	1.2. Principles
	1.3. ML Classes - Overview
	1.3.1. Classes for Module Development
	1.3.1.1. Module Overview
	1.3.1.2. Field Overview
	1.3.1.3. FieldContainer Overview
	1.3.1.4. Image Classes Overview

	1.3.2. Administrative Classes
	1.3.2.1. The Host Overview
	1.3.2.2. The MLMemoryManager and Memory Handling
	1.3.2.3. Memory Overview
	1.3.2.4. The Runtime Type System
	1.3.2.5. Debugging Overview and Error Handling Support

	1.3.3. Image Classes
	1.3.3.1. ImageProperties Overview
	1.3.3.2. MedicalImageProperties Overview
	1.3.3.3. PagedImage Overview
	1.3.3.4. SubImage and TSubImage Overview
	1.3.3.5. VirtualVolume
	1.3.3.6. BitImage
	1.3.3.7. MemoryImage

	1.3.4. Helper Classes
	1.3.4.1. ImageVector
	1.3.4.2. SubImageBox

	1.3.5. APIs and Classes for Interfaces and Voxel Type Extensions
	1.3.6. Component Groups
	1.3.7. The ML Module Database

	Chapter 2. Detailed Class Overview and Usage
	2.1. Classes for Module Development
	2.1.1. Module
	2.1.2. Field
	2.1.2.1. Standard Fields
	2.1.2.2. Important Field Methods
	2.1.2.3. Base Field

	2.1.3. FieldContainer
	2.1.4. Image Classes for Module Development

	2.2. Administrative Classes
	2.2.1. Host
	2.2.2. Memory
	2.2.3. Base
	2.2.4. The Runtime Type System
	2.2.5. Debugging and Error Handling Support

	2.3. Image Classes
	2.3.1. ImageProperties
	2.3.2. MedicalImageProperties
	2.3.3. ImagePropertyExtension
	2.3.4. PagedImage
	2.3.5. SubImage/TSubImage
	2.3.5.1. Example

	2.3.6. BitImage
	2.3.7. VirtualVolume
	2.3.7.1. Code Examples
	2.3.7.2. Using Exceptions for Safe VirtualVolume Usage
	2.3.7.3. Performance Issues on VirtualVolume Usage

	2.3.8. MemoryImage

	2.4. Helper Classes
	2.4.1. ImageVector, ImageVector
	2.4.2. SubImageBox

	2.5. APIs and Classes for Interfaces and Voxel Type Extensions
	2.5.1. How Applications and the ML Work
	2.5.2. The C-API
	2.5.3. Registering and Using Self-Defined Data Types

	2.6. Tools
	2.6.1. MLLinearAlgebra(Vector2, ..., Vector10, Vector16, Matrix2, , ..., Matrix6, quaternion, ImageVector)
	2.6.2. MLUtilities
	2.6.3. Other Classes
	2.6.3.1. SubImageBoxd
	2.6.3.2. Other Classes and Types
	2.6.3.2.1. MLDataType

	2.6.4. MLBase
	2.6.5. MLKernel
	2.6.6. MLTools
	2.6.7. MLDiagnosis
	2.6.8. MLImageFormat
	2.6.9. MLDataCompressors
	2.6.9.1. How to Implement a New DataCompressor

	2.7. Registered Data Types
	2.8. ML Data Types
	2.8.1. Voxel Types and Their Enumerators
	2.8.2. Index, Size and Offset Types

	Chapter 3. Deriving Your Own Module from Module
	3.1. Deriving from Module
	3.1.1. Basics
	3.1.2. Implementing the Constructor
	3.1.3. Module Persistence and Overloading activateAttachments()
	3.1.4. Implementing handleNotification()
	3.1.5. Using TypedCalculateOutputImageHandler
	3.1.6. Implementing calculateOutputImageProperties()
	3.1.7. Implementing calculateInputSubImageBox()
	3.1.8. Changes to calcInSubImageProps()
	3.1.9. Implementing calculateOutputSubImage()
	3.1.10. Handling Disconnected or Invalid Inputs by Overloading handleInput()
	3.1.10.1. Checking Module Inputs for Validity

	3.1.11. Configuring Image Processing Behavior of the Module
	3.1.11.1. Inplace Image Processing
	3.1.11.2. Bypassing Image Data
	3.1.11.3. Multithreading: Processing Image Data in Parallel
	3.1.11.3.1. How to Implement Thread-Safe Code Fragments

	3.1.11.4. Processing Images of Registered Voxel Types

	3.1.12. Explicit Image Data Requests from Module Inputs
	3.1.13. Getting Single Voxel Values from Module Inputs
	3.1.14. Interrupting Page-Based Image Processing and Handling Errors
	3.1.15. Testing for Interruptions During Calculations
	3.1.16. Adapting Page Extents
	3.1.17. Processing Input Images Sequentially
	3.1.18. Traps and Pitfalls in Classes Derived from Module

	Chapter 4. Image Processing Concepts
	4.1. Page Calculation in the ML
	4.2. Page-Based Approaches
	4.2.1. Page-Based Concept
	4.2.2. Voxel-Based Concept
	4.2.3. Slice-Based Concept
	4.2.4. Kernel-Based Concept

	4.3. Concepts for Partially Global Image Processing
	4.3.1. Random Access Concept (Tile Requesting)
	4.3.2. Sequential Image Processing Concept
	4.3.3. VirtualVolume Concept

	4.4. Global Image Processing Concepts
	4.4.1. Temporary Global Concept
	4.4.2. Global Image Processing Concept
	4.4.3. BitImage Concept
	4.4.4. MemoryImage Concept

	4.5. Miscellaneous Modules

	Chapter 5. Debugging and Error Handling
	5.1. Printing Debug Information
	5.2. Handling Errors
	5.3. Registering Error Handlers
	5.4. The Class ErrorOutput and Configuring Message Outputs
	5.5. Tracing, Exception Handling and Checked Object Construction/Destruction

	Chapter 6. The C-API
	6.1. The C-API
	6.2. mlInitSystemML.h
	6.3. mlAPI.h
	6.4. mlDataTypes.h
	6.5. mlTypeDefs.h
	6.6. C-Example using the C-API

	Chapter 7. Registered Voxel Data Types
	7.1. Overview of Registered Voxel Data Types
	7.1.1. Registered Voxel Data Types
	7.1.2. About Standard, Default and Registered Voxel Types

	7.2. Implementing Image Processing on extended Voxel Data Types
	7.2.1. Important Functions For Voxel Types
	7.2.2. The Basic Concept of Calculating the Output SubImage
	7.2.3. Examples with Registered Voxel Types
	7.2.4. Compile and Runtime Decisions on Standard and Registered Voxel Types
	7.2.5. Handling Generalized Registered Voxel Types as Module Parameters

	7.3. Limitations of Registered Data Types
	7.4. Traps and Pitfalls When Using Registered Voxel Types
	7.5. Advanced Issues on Registered Voxel Types
	7.5.1. About the Difference Between Scalar, Extended and Registered Voxel Types
	7.5.2. Getting and Managing Metadata About Registered Voxel Types
	7.5.2.1. Functions for Managing Components of Registered Voxel Types
	7.5.2.2. Convenience Functions to Operate on Registered Voxel Data

	7.5.3. Reducing Generated Code and Compile Times
	7.5.4. Configuration of Supported Voxel Types
	7.5.5. Implementing a New Voxel Data Type by Deriving from MLTypeInfos
	7.5.5.1. Describing a New Voxel Type with MLTypeInfos
	7.5.5.2. The MLTypeAddExample

	Chapter 8. Base Objects
	8.1. Base Objects
	8.2. Composing, Storing and Retrieving Base Objects
	8.3. Creating Trees from Base Objects Using TreeNodes
	8.4. Writing/Reading Base Objects to/from AbstractPersistenceStream

	Chapter 9. Unicode Support
	9.1. Unicode Support

	Chapter 10. File System Support
	10.1. File System

	Appendix A. Basics about ML Programming and Projects
	A.1. Creating an ML Project by Using MeVisLab
	A.2. Programming Examples
	A.3. Exporting Library Symbols
	A.4. General Rules for ML Programming
	A.5. How to Document an ML Module
	A.6. Updating from Older ML Versions
	A.7. Version Control

	Appendix B. Optimizing Image Processing
	B.1. Optimizing Module Code
	B.2. Optimizing Data Flow in Module Networks

	Appendix C. Handling Memory Problems
	Appendix D. Messages and Errors
	D.1. ML Error Codes

	Appendix E. Improving Quality of ML-Based Software
	Glossary

